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For questions with circular bubbles, you may select only
one choice.

Unselected option (completely unfilled)
Only one selected option (completely filled)
Don’t do this (it will be graded as incorrect)

For questions with square checkboxes, you may select one
or more choices.

You can select
multiple squares (completely filled)

Anything you write outside the answer boxes or you cross
out will not be graded. If you write multiple answers, your
answer is ambiguous, or the bubble/checkbox is not entirely
filled in, we will grade the worst interpretation.

Pre-exam activity:

(Just for fun, not graded.)

Let’s play Rock Paper Scissors with
EvanBot! Circle your move below, and
we will reveal your result after the
exam!

Rock Paper Scissors

To prove EvanBot isn’t cheating, here is
the SHA256 hash of EvanBot’s move:

406dba28c82f3d8ff18b2df401d5b02c
6b1debc42ca5866585497fdb23e51741

Q1 Honor Code (1 point)
I understand that I may not collaborate with anyone else on this exam, or cheat in any
way. I am aware of the Berkeley Campus Code of Student Conduct and acknowledge
that academic misconduct will be reported to the Center for Student Conduct and may
further result in, at minimum, negative points on the exam.

Read the honor code above and sign your name:
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Q2 True/False (13 points)
Each true/false is worth 1 point.

Q2.1 EvanBot brings both an umbrella and a raincoat, so that EvanBot will stay dry even if the raincoat
tears or the umbrella breaks.

True or False: This is an example of defense in depth.

(A) True (B) False

Solution: True. EvanBot is using two different defenses against the same attack, so that if
one of the defenses fails, the other can still work.

Q2.2 A store installs sensors at the main exit to detect shoplifting, but there is another exit in the back
of the store without sensors installed.

True or False: This is a failure to ensure complete mediation.

(A) True (B) False

Solution: True. In order to ensure complete mediation, the store should make sure that every
exiting customer undergoes the same check.

For the next 3 subparts: Suppose we have a little-endian C program with a local variable char buf[64].
Consider the following possible GDB output after running the command x/8wx buf:

0xffff1430: 0x00003500 0x6ca59820 0x0000abcd 0x74392bc2

0xffff1434: 0x00000000 0x00000000 0x00000000 0x00000000

Q2.3 True or False: The addresses in the left-most column of this GDB output are valid GDB output.

(A) True (B) False

Solution: False. This output has address label 0xffff1430 followed by 16 bytes of output.
Then, it has an address label 0xffff1434 (4 bytes higher) for the byte that actually comes 16
bytes later. This label should instead be 0xffff1440.
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Q2.4 True or False: buf[5] is 0x98.

(A) True (B) False

Solution: True. 0x00003500 is the word that contains buf[0], buf[1], buf[2], and
buf[3].

Then, in the word 0x6ca59820, since the system is little-endian, buf[4] is the LSB of this
word, 0x20. Then, buf[5] is the second-least-significant byte of this word, 0x98.

Q2.5 True or False: The command x/16wx buf would display all 64 bytes in buf.

(A) True (B) False

Solution: True. This command prints out 16 words = 64 bytes starting at buf.

Q2.6 True or False: A C program that never lets the user change the values of the RIP and SFP is safe
against all memory safety attacks.

(A) True (B) False

Solution: False. It would still be possible to overwrite local variables, for example. (Other
more sophisticated attacks may also exist, e.g. overwriting a pointer.)

Q2.7 True or False: A 128-bit stack canary would be secure against any practical brute-force attacks
against the canary.

(A) True (B) False

Solution: True. An attacker would need to try 2128 possibilities, which is infeasible (in the
same way that guessing a 128-bit key is infeasible).
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Q2.8 True or False: When pointer authentication is enabled, an attacker who inspects the program
memory cannot learn the values of any addresses.

(A) True (B) False

Solution: False. The address values still appear in memory, but with an extra pointer authen-
tication code replacing the top bits (which used to be all zero). Pointer authentication stops an
attacker from modifying addresses; it does not stop an attacker from reading addresses.

Q2.9 You are using GDB to debug a program with ASLR enabled.

True or False: Running a valid x command (e.g. x/4wx var for some local variable var) will
always help you learn something about the address randomization on the current run of the
program.

(A) True (B) False

Solution: True. The x command outputs the address of the variable, in addition to mem-
ory at that address. Therefore, you can use the output to learn something about address
randomization.

Q2.10 You are using GDB to debug a program with ASLR enabled.

True or False: Running a valid x command will always help you learn something about the
address randomization on a different run of the program.

(A) True (B) False

Solution: False. Even though the command will show you some addresses for the current
run of the program, on a different run of the program, the addresses will probably change.

Q2.11 True or False: Publicly revealing the value of nothing-up-my-sleeve numbers does not compromise
the security of the cryptographic system.

(A) True (B) False

Solution: True. Nothing-up-my-sleeve numbers are, by definition, publicly-known constants.
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Q2.12 Alice decides to build a PRNG with a secure hash functionH . For a seed s, she outputsH(s∥0)
and sets the new seed to H(s∥1).

True or False: This PRNG is rollback-resistant.

(A) True (B) False

Solution: True by the one-wayness of H .

Q2.13 True or False: Creating a new certificate requires generating a secure digital signature.

(A) True (B) False

Solution: True. By definition, a certificate is a signed attestation of somebody’s public key,
so to generate a new certificate, we need to generate a digital signature.
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Q3 Memory Safety: Homecoming (14 points)
Consider the following vulnerable C code:

1 void vu l n e r a b l e ( ) {
2 char vu l n e r a b l e _ b u f [ 3 2 ] ;
3 f g e t s ( vu l n e r a b l e _ bu f , 3 2 , s t d i n ) ;
4 h e l p e r ( v u l n e r a b l e _ b u f ) ;
5 }
6
7 void he l p e r ( char ∗ arg ) {
8 char he l p e r _ bu f [ 3 2 ] ;
9 f g e t s ( h e l pe r_bu f , 3 7 , s t d i n ) ;
10 }

These assembly instructions occur in memory:

1 0 x08076000 : r e t
2 0 x08076004 : pop %eax
3 . . .
4 0 x08076030 : c a l l h e l p e r
5 0 x08076034 : add $4 , %esp
6 0 x08076038 : mov %ebp , %esp
7 0 x0807603c : pop %ebp
8 0 x08076040 : r e t

Stack at Line 8

RIP of vulnerable

(1)

(2)

(3)

(4)

(5)

(6)

Assumptions:

• You may use SHELLCODE as a 31-byte shellcode.
• ASLR is enabled, not including the code segment (i.e. the addresses in the code segment don’t
change).

• Using GDB, you find that the RIP of helper has value 0x08076034.
• Unless otherwise specified, all other memory safety defenses are disabled.

Q3.1 (1 point) What values go in blanks (1) through (3) in the stack diagram above?

(A) (1) arg (2) SFP of vulnerable (3) vulnerable_buf
(B) (1) SFP of vulnerable (2) arg (3) vulnerable_buf
(C) (1) SFP of vulnerable (2) vulnerable_buf (3) arg
(D) (1) vulnerable_buf (2) SFP of vulnerable (3) arg
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Q3.2 (1 point) What values go in blanks (4) through (6) in the stack diagram above?

(A) (4) helper_buf (5) RIP of helper (6) SFP of helper
(B) (4) RIP of helper (5) helper_buf (6) SFP of helper
(C) (4) RIP of helper (5) SFP of helper (6) helper_buf
(D) (4) SFP of helper (5) helper_buf (6) RIP of helper

Solution:

RIP of vulnerable

SFP of vulnerable

char vulnerable_buf[32]

char* arg

RIP of helper

SFP of helper

char helper_buf[32]
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Q3.3 (2 points) Recall the off-by-one exploit in Project 1, where we overwrite an SFP with a specific
value that causes shellcode to execute.

Why does the off-by-one exploit not work here with 100% probability?

(A) ASLR is enabled, so we don’t know what value to overwrite an SFP with.

(B) ASLR is enabled, so instructions written on the stack are not executable.

(C) The off-by-one exploit requires two returns after overwriting an SFP, and this code only
returns once after overwriting an SFP.

(D) It is not possible to overwrite an SFP in this code.

Solution:

Recall that in the off-by-one exploit, we overwrite the SFP with the address of some part of
memory we control. (The program then thinks that the caller function’s RIP/SFP are located
in some part of memory we control.)

In this question, we control the values that are written to the two buffers, both on the stack.
However, if ASLR is enabled, we don’t know the address of either buffer, so we cannot overwrite
the SFP with the address of either buffer.

Option (B) is false. Non-executable pages is the defense that causes instructions written on the
stack to be non-executable. ASLR does not affect whether segments of memory are executable.

Option (C) is false. The fgets call inside helper overwrites the SFP of helper. Then, we
return from helper back to vulnerable. Then, vulnerable returns. This is a sequence of
two function returns after the SFP is overwritten.

Option (D) is false. The fgets call at Line 9 allows us to overwrite 4 bytes above helper_buf,
where the SFP of helper is located.
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Here is an exploit that causes shellcode to execute with 100% probability:

Input to fgets in vulnerable: SHELLCODE

Input to fgets in helper: SHELLCODE + 5*'A'

Q3.4 (2 points) The function epilogue for helper runs:

mov %ebp, %esp

pop %ebp

ret

What is the next instruction executed after ret?

(A) pop %eax

(B) pop %ebp

(C) The ret instruction at 0x08076000

(D) The ret instruction at 0x08076040

(E) The SHELLCODE in vulnerable_buf

(F) The SHELLCODE in helper_buf

Solution: The exploit overwrites the LSB of the RIP of helper with a null byte. The RIP
of helper now has value 0x08076000. When the helper function returns, we jump to this
address and start executing instructions. The next instruction executed is the ret instruction
at address 0x08076000.

Longer solution available at the bottom of this question.

Q3.5 (2 points) What is the next instruction executed after your answer to Q3.4?

(A) pop %eax

(B) pop %ebp

(C) The ret instruction at 0x08076000

(D) The ret instruction at 0x08076040

(E) The SHELLCODE in vulnerable_buf

(F) The SHELLCODE in helper_buf

Solution: Recall that the ret instruction treats the next value on the stack as an address, and
causes the program to start executing instructions at that address.

When the ret instruction executes, the next value on the stack is the value directly above
the RIP of helper. This is the argument to helper, which is a pointer to (aka the address of)
vulnerable_buf.

The program jumps to vulnerable_buf and starts executing the shellcode we put in there.
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Q3.6 (2 points) For this subpart only, suppose we run this exploit on a big-endian system instead of a
little-endian system.

Does the exploit listed above still work?

(A) Yes, because the same bytes are written into memory.

(B) Yes, because endianness does not affect shellcode (the instructions are always executed
from low to high addresses).

(C) No, because a different byte of the RIP is overwritten.

(D) No, because endianness affects shellcode (we would have to reverse the shellcode to
make the exploit work).

Solution: This exploit relies on the fgets(helper_buf, 37, stdin) call overwriting the
LSB of the RIP of helper.

In a little-endian system, the LSB is stored at the lowest address, so when we overwrite the
byte immediately above the SFP, we end up overwriting the LSB of the RIP.

In a big-endian system, the MSB is stored at the lowest address instead, so this exploit would
instead cause the MSB of the RIP to be overwritten.

This would cause the RIP’s value, 0x08076034, to be replaced with 0x00076034. This is no
longer the address of a ret instruction, so the exploit no longer works.

Option (D) is incorrect because the statement is false. Instructions in memory are executed
from lower addresses to higher addresses, so we do not need to reverse the shellcode. (If you’ve
taken 61C, recall that the program counter increments by 4 after executing an instruction,
indicating that the next instruction is at a higher address.)
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Q3.7 (2 points) For this subpart only, suppose that we swap the ret instruction at address 0x08076000
and the pop %eax instruction at address 0x08076004.

Does the exploit listed above still work?

(A) Yes, with no modifications.

(B) Yes, but only if we replace 'A'*5 with '\x04'*5.

(C) No, because we cannot change the last byte that fgets writes in memory.

(D) No, because pop %eax is not a valid x86 assembly instruction.

Solution: Option (A) is incorrect. If we leave the exploit unmodified, then the program will
still try to execute instructions starting at address 0x08076000. Now, the first instruction
executed is pop %eax, which pops arg off the stack.

Next, when we execute the ret instruction at 0x08076004, the next value on the stack is
vulnerable_buf, which is not the address of shellcode, so the address we jump to is not the
address of shellcode. (Not needed to solve this question, but since vulnerable_buf contains
shellcode, we’ll attempt to read the first 4 bytes of shellcode as an address and jump to that
address, which will likely crash the program.)

Option (B) is incorrect. The 5 garbage bytes are written to helper_buf and the SFP of helper.
They are not written to the RIP of helper. With this modification, the RIP of helper is still
overwritten to be 0x08076000 (because of the null byte appended by fgets), and the exploit
fails for the same reasoning as in Option (A).

Option (C) is the best answer choice. To make this exploit work again, we would need to
overwrite the RIP of helperwith 0x08076004 instead of 0x08076000, but this is not possible,
because the null byte is not part of the input we control; it is automatically appended by fgets.

Option (D) is incorrect because the statement is false. Executing a ret instruction results in
the same behavior, no matter where that instruction is located in memory.
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Q3.8 (2 points) For this subpart only, suppose that we run this code on a 64-bit system, with pointer
authentication codes (PACs) enabled.

Also, suppose that fgets(helper_buf, 37, stdin) is changed to fgets(helper_buf, 41,
stdin).

Does the exploit listed above still work?

(A) Yes, because the exploit never changes the value of arg in memory.

(B) Yes, because the exploit modifies addresses without overwriting any PACs.

(C) No, because PACs prevent all buffer overflows.

(D) No, because the exploit changes the value of an address in memory.

Solution: Recall that in a 64-bit system, addresses are 64 bits = 8 bytes long.

If we keep the exploit as-is, then we only overwrite the lower 5 bytes of the SFP with
garbage/null. This will still cause the program to crash as shown below.

If we modify the exploit to use 9 garbage bytes, we overwrite helper_buf with 31 bytes of
shellcode, followed by a garbage byte. Then, we overwrite the 8-byte SFP with 8 garbage bytes.
Finally, fgets overwrites the LSB of the 8-byte RIP with a null byte.

Recall that with PACs enabled, the most-significant bits of a pointer (which are all zeros) are
replaced with a PAC that is unique to that address. When we change the address without
changing the PAC, the PAC is no longer correct, so the program will crash when trying to
dereference this address. This happens when we overwrite the LSB of the RIP without changing
the PAC.

Option (C) is incorrect because the statement is false. Buffer overflows are still possible even
with PACs enabled, as long as no addresses are overwritten (e.g. overwriting local variables).

Solution: Longer solution:

Recall that the fgets function writes a maximum of n-1 bytes (one fewer than the number supplied
by the user) into memory, and then appends a null byte at the end of the user’s input. Both of
our inputs are exactly n-1 bytes long, and each will cause n bytes to be written into memory: our
input, followed by a null byte. (The value of n is different for each call.)

We pass the 31-byte shellcode into the fgets(vulnerable_buf, 32, stdin) call on Line 3.
This causes the 32-byte vulnerable_buf to be filled with 31 bytes of shellcode, followed by a null
byte. No part of memory outside of the buffer is modified as a result of this fgets call.

We pass 31 bytes of shellcode and 5 garbage bytes into the fgets(helper_buf, 37, stdin).
This causes the 32-byte helper_buf to be filled with 31 bytes of shellcode, followed by one garbage
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byte. Then, immediately above helper_buf is the SFP of helper, which gets overwritten by the
other 4 garbage bytes. Finally, the null byte is written into memory. This overwrites the byte in
memory directly above the SFP of helper, namely: the least-significant byte (LSB) of the RIP of
helper.

Here is the stack diagram after our inputs are written into memory:

RIP of vulnerable

SFP of vulnerable

char vulnerable_buf[32] - overwritten with 31 bytes of shellcode, followed by a null byte.

char* arg

RIP of helper - LSB is overwritten with a null byte.

SFP of helper - overwritten with 4 garbage bytes.

char helper_buf[32] - overwritten by 31 bytes of shellcode, followed by 1 byte of garbage.

From the assumptions, the RIP of helper had value 0x08076034. When we overwrite the LSB of
the RIP with a null byte, the value changes to 0x08076000.

When helper returns, we start executing instructions in memory starting at address 0x08076000.
According to the assembly dump, there is a ret instruction at 0x08076000 that gets executed.

Just before the ret instruction in helper’s epilogue executes, the ESP register is pointing at the
RIP of helper. This is standard function behavior; the ESP points at the RIP just before the ret
instruction.

After we execute the ret instruction in helper’s epilogue, the ESP moves up by 4, so that it is
now pointing at char* arg, the argument to helper. This is also standard function behavior;
immediately after the function returns, the ESP is pointing at the lowest argument on the stack.

We now execute the ret instruction at 0x08076000. At this point, the ESP is pointing at arg, so
the value of arg will be treated as an address, and we will jump to that address and start executing
instructions.

Note: 0x08076034 is the value of the RIP stored in memory. The RIP’s value is an address, telling
us which instruction in memory to execute next after the function returns. Typically the value of
the RIP will be an address in the code segment of memory.

0x08076034 is not the address of the RIP. The address of the RIP would be some address on the
stack, but the address of the RIP is not given in this question, and is not relevant to the exploit.
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Q4 Memory Safety: Forbidden Instruction (17 points)
Consider the following vulnerable C code:

1 vo id v u l n e r a b l e ( ) {
2 char buf [ 8 ] ;
3 g e t s ( buf ) ;
4 }

Assumptions:

• Each x86 instruction is 4 bytes long in machine code.
• The address of buf is 0xffff1230.
• In the entire question, the SHELLCODE we want to execute is 16 bytes long.
• The system runs a special variant of non-executable pages: the instruction that assembles to the
machine code 0xdeadbeef cannot be executed on any page marked as non-executable. All other
instructions can be executed anywhere in memory.

Q4.1 (3 points) For this subpart only, suppose that the 16-byte shellcode appears in the code section of
memory at address 0x10101234.

Select all inputs to the gets call that would cause the shellcode to execute. (Assume every input is
followed by a newline character.)

(A) 'A' * 8 + '\x34\x12\x10\x10'
(B) 'A' * 12 + '\x34\x12\x10\x10'
(C) '\x34\x12\x10\x10' * 4

(D) 'A' * 12 + '\x10\x10\x12\x34'
(E) 'A' * 8 + '\x10\x10\x12\x34'
(F) None of the above.

Solution: The exploit in this subpart is a “classic” buffer overflow like in Project 1, Question
1.

We need to write 12 bytes of garbage to overflow the buffer and the SFP of vulnerable. Then,
we need to overwrite the RIP of vulnerable so that the program executes the shellcode at
0x10101234 upon returning.

Option (A) doesn’t work because it writes too few bytes of garbage; it causes the address of
shellcode to appear in the SFP of vulnerable.

Options (B) and (C) both work, because they have 12 bytes of input, followed by the address
of shellcode.

Options (D) and (E) both don’t work, because they write the address of shellcode in big-endian,
not little-endian. This would cause the little-endian program to jump to address 0x34121010,
which is not where we placed shellcode.
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In the next few subparts, suppose that only the last instruction of shellcode is the special instruction.
In other words, SHELLCODE[12:16] = 0xdeadbeef. All other instructions in the shellcode are not
the special instruction.

Q4.2 (2 points) Which sequence of bytes must exist in the code section of memory in order for us to
execute shellcode?

(A) 0x00000000
(B) 0xdeadbeef

(C) 0xffff1230
(D) 0xffff123c

(E) A nop instruction
(F) A ret instruction

Solution: The special instruction (0xdeadbeef).

We need the special instruction to appear in the code section of memory in order to execute it.

Q4.3 (2 points) Assume that the byte sequence you provided in the previous subpart appears in the
code section of memory at address 0x10101234.

In addition to shellcode, the exploit will need to contain a single extra x86 instruction. What should
this extra instruction do?

(A) Jump to the address 0xdeadbeef.
(B) Jump to the address 0xffff1230.
(C) Jump to the address 0x10101234.

(D) The special instruction (0xdeadbeef).
(E) The ret instruction.
(F) The nop instruction.

Solution: From the previous subpart, we found that the special instruction appears in memory
at address 0x10101234, so we’ll need an instruction that jumps to that memory address to
execute that special instruction.
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Q4.4 (4 points) Again, assume that the byte sequence you provided in Q4.2 appears at address
0x10101234.

Provide an input to the gets call that would cause the shellcode to execute.

You may use the variable INST to represent the 4-byte x86 instruction you answered in the previous
subpart.

Solution: 'A' * 12 + \x40\x12\xff\xff + SHELLCODE[0:12] + INST

The first three parts of this exploit are a classic buffer overflow that redirects execution to the
start of shellcode.

After executing the first three instructions (12 bytes) of shellcode, we still need to execute the
special instruction. However, we can’t write this special instruction on the stack, since the
non-executable page defense stops us from executing this instruction when we write it into
memory ourselves. Instead, our solution executes a jump instruction that jumps to address
0x10101234, where the special instruction appears in the code section (which is executable).

For the rest of the question, suppose that only the first instruction of shellcode is the special instruction.
In other words, SHELLCODE[0:4] = 0xdeadbeef. All other instructions in the shellcode are not the
special instruction.

Also, suppose that the following x86 instructions appear in the code section of memory. (The sequence
of bytes you provided in Q4.2 are no longer in the code section of memory.)

1 0 x10101280 : jmp 0 x1010129c
2 0 x10101284 : pop %eax
3 0 x10101288 : c a l l h e l p e r
4 0 x1010128c : add $4 , %esp
5 0 x10101290 : mov %esp %ebp
6 0 x10101294 : 0 xdeadbee f ( s p e c i a l i n s t r u c t i o n )
7 0 x10101298 : r e t
8 0 x1010129c : 0 xdeadbee f ( s p e c i a l i n s t r u c t i o n )
9 0 x101012a0 : c a l l e x i t ( t e rm i n a t e s the program )
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Q4.5 (6 points) Provide an input to the gets call that would cause the shellcode to execute.

Solution: 'A' * 12 + \x94\x12\x10\x10 + \x44\x12\xff\xff +
SHELLCODE[4:16]

—

The correct sequence of bytes in memory that we need to dereference is: The special instruction
(0xdeadbeef), followed by the machine code for a ret instruction.

As in the previous exploit, we need the special instruction to appear in the code section of
memory in order to execute it. Additionally, we need a ret instruction immediately afterwards
so that we can redirect execution somewhere else and execute the rest of our shellcode.

This answer uses a total of 8 bytes (2 instructions, 4 bytes per instruction). The entire shellcode
is 16 bytes long, so it is not the shortest possible sequence.

A 4-byte sequence (e.g. only the special instruction) would not work here, because after the
program execute the special instruction, it would try to execute the instruction immediately
afterwards in memory, which might not correspond to the next instruction in our shellcode.

—

The pattern of this exploit is similar to a return-oriented programming (ROP) attack we saw
from lecture. The two “gadgets” (code snippets) we want to execute are the special instruction,
which already exists in memory at 0x10101294, and the rest of the shellcode, which we’ll
place in memory ourselves.

As in the classic buffer overflow, we use 12 bytes of garbage to overwrite both the buffer and
the SFP. Then, we overwrite the RIP with 0x10101294, the address of the first gadget.

When the function returns, it will redirect execution to 0x10101294 and execute the special
instruction. Then, it will execute the ret instruction immediately after the special instruction.
The ret instruction will take the next item on the stack, read it as an address, and start
executing instructions at that address.

Therefore, we should make the next item on the stack (the 4 bytes directly above the RIP) the
address of our remaining shellcode. We have to write the remaining shellcode in memory
ourselves, so we place it at the very end of our exploit, which happens to be at address
0xffff1244 (20 bytes after the start of buffer). Then, in the 4 bytes directly after the RIP, we
place the address of our remaining shellcode.
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Q5 Symmetric-Key Cryptography: Not Quite by DESign (16 points)

Q5.1 (2 points) Suppose we take AES-CBC encryption and replace all AES encryption blocks with
HMAC. The new encryption formula for a messageM = (M1,M2, . . . ,Mn) is:

C0 = IV

Ci = HMAC(K,Mi ⊕ Ci−1)

Select all true statements about this new scheme.

(A) M must be padded until M is a multiple of the HMAC output size before computing C .
(B) Someone who knowsK is able to decrypt any ciphertext.
(C) Someone who does not knowK is able to decrypt any ciphertext.
(D) None of the above.

Solution: HMAC is not invertible, so ciphertext cannot be decrypted, even if you knowK .

Padding is not required in this scheme. Suppose the last blockMi is shorter than the HMAC
output size. Note that Cn−1 is the output of HMAC, so it will always be the HMAC output size
(and therefore longer than Mi). Then, when computing Mn ⊕ Cn−1, we could throw away
the extra bits of Cn−1 until Mn and Cn−1 are the same length. Then, we can compute the
XOR and pass the result into HMAC, because HMACs take arbitrary-length input.

Q5.2 (2 points) Now suppose we take AES-CTR encryption and replace all AES encryption blocks with
HMAC. The new encryption formula is:

Ci = Mi ⊕ HMAC(K, IV + i)

Select all true statements about this new scheme.

(A) M must be padded until M is a multiple of the HMAC output size before computing C .
(B) Someone who knowsK is able to decrypt any ciphertext.
(C) Someone who does not knowK is able to decrypt any ciphertext.
(D) None of the above.

Solution: Even though HMAC is not invertible, someone who knows K can create the same
one-time pad and correctly decrypt the ciphertext.

Padding is not required in this scheme. IfMn is less than the HMAC output size, we can throw
away the extra bits of HMAC(K, IV +n) to compute the XOR of the last block. This is similar
to AES-CTR encryption, where we can throw away the unneeded extra bits of E(K, IV + n).

The rest of the question is independent of the first two subparts.
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M

L0 R0

HMAC

K

L1

HMAC

K

R1

C

For the rest of the question, consider this
scheme for encrypting 128-bit messages:

1. Split the message into two halves.
L0 = M[:64]

R0 = M[64:128]

2. Set L1 = L0 ⊕ HMAC(K,R0).

3. Set R1 = R0 ⊕ HMAC(K,L1).

4. Concatenate L1 and R1 to get the
ciphertext.
C = L1∥R1

For this question, you can assume that
HMAC outputs 64 bits.

A copy of the diagram on the previous page is available on the appendix.

Q5.3 (2 points) What is the decryption formula for L0?

L0 is equal to these values, XORed together. Select as many options as you need.

For example, if you think L0 = R1 ⊕ L1, then bubble in R1 and L1.

(A) R0

(B) HMAC(K,R0)

(C) R1

(D) HMAC(K,R1)

(E) L1

(F) HMAC(K,L1)

Solution: L0 = L1 ⊕ HMAC(K,R0)

Manipulate the equation in encryption step 2 to solve for L0.

Note: This question is graded all-or-nothing, because the answer choices are not independent.
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Q5.4 (2 points) What is the decryption formula for R0?

R0 is equal to these values, XORed together. Select as many options as you need.

(A) L0

(B) HMAC(K,L0)

(C) R1

(D) HMAC(K,R1)

(E) L1

(F) HMAC(K,L1)

Solution: R0 = R1 ⊕ HMAC(K,L1)

Manipulate the equation in encryption step 3 to solve for R0.

Note: This question is graded all-or-nothing, because the answer choices are not independent.

In the next two subparts, consider this scenario: Alice encrypts a messageM and gets ciphertext C .
Later, Alice encrypts M again, but with one bit in L0 flipped.

Q5.5 (2 points) What happens to L1 in the resulting ciphertext?

(A) It is unchanged.
(B) One bit is flipped.

(C) It is unpredictably different (garbage).
(D) None of the above.

Solution: L1 = L0 ⊕ HMAC(K,R0)

If we flip one bit in L0, this causes one bit in L1 to change.

Q5.6 (2 points) What happens to R1 in the resulting ciphertext?

(A) It is unchanged.
(B) One bit is flipped.

(C) It is unpredictably different (garbage).
(D) None of the above.

Solution: L1 = L0 ⊕ HMAC(K,R0)

R1 = R0 ⊕ HMAC(K,L1)

If we flip one bit in L0, then that causes L1 to be different in one bit. Then, this causes
HMAC(K,L1) to be unpredictably different, which in turn causes R1 to be unpredictably
different.
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Q5.7 (4 points) Does this scheme provide integrity?

(A) Yes (B) No

Briefly explain your answer (two sentences or fewer is sufficient).

Solution: Despite using HMAC as the internal function, we never verify the MAC integrity.
HMAC is simply a random-looking, keyed function in this case.

Even if we tried to add steps to verify the HMACs, any verification requires an expected
input/output pair (message/tag). In our case we always have one of those two variables
unknown and dependent on the other, precisely because we use HMAC to derive them instead
of verify them.

For example, if we tried to verify HMAC(K,L1) we would need to recover R0. To recover
R0 with need to use HMAC(K,L1), meaning R0 ends up taking whatever value is needed
to make the equation work. Effectively, since we need to use HMAC to recover the values
required to verify it, we can never verify that the original values were as intended.

For example, using our decryption equations:

L0 = L1 ⊕ HMAC(K,R0)
R0 = R1 ⊕ HMAC(K,L1)

We are given some possibly-modified L′
1, R

′
1. Using HMAC(K,L′

1) and R′
1 we can find R′

0

that makes the equation true, but this is not necessarily the original R0. For example, if we
had C = 0128 (all zeroes) which is extremely unlikely to be a "real" ciphertext, we would just
end up setting R0 = HMAC(K, 0) and L0 = HMAC(K,HMAC(K, 0)) with no way to verify
that these are intended or not, since running the encryption algorithm on L′

0, R
′
0 would end

up with C = 0128.
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Q6 Integrity and Authenticity: Mix-and-MAC (22 points)
Alice designs a scheme that generates a single MAC on a list of n messages M1,M2, . . . ,Mn.

KK

M1 M2 Mn...
HMACK HMAC HMAC

T

t1 t2 tn...

1. Compute HMACs on each individual message. ti = HMAC(K,Mi), for 1 ≤ i ≤ n.
2. XOR all the HMAC outputs (ti) together to get the final MAC output. T = t1 ⊕ t2 ⊕ . . .⊕ tn.

Clarification during exam: Each entry Mi message list must be unique. Lists of the same elements in
different order are considered to be equal (i.e. the list is better described as a set).

Q6.1 (2 points) Does this scheme require the message length to be less than or equal to the length of
the HMAC output?

(A) Yes, because HMAC processes messages one block at a time.

(B) Yes, because XOR cannot be done between two different-length bitstrings.

(C) No, because HMAC pads shorter messages to the block length.

(D) No, because HMAC takes in arbitrary-length inputs and outputs fixed-length outputs.

Solution: By definition, HMAC can take in arbitrary-length inputs.

Option (C) is false. HMAC does not pad shorter messages.
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Q6.2 (2 points) Alice computes the MAC for the message list [M1, . . . ,Mn]. She sends the message list
and the MAC to Bob.

Bob adds a new messageMn+1 to the list, and wants to compute the MAC of the new message list
[M1, . . . ,Mn,Mn+1].

What is the minimum number of HMACs that Bob needs to compute in order to compute the MAC
of the new message list?

(A) 0 (B) 1 (C) 2 (D) n/2 (E) n (F) n+1

Solution: Bob computes tn+1, which only takes one HMAC to compute. Then Bob can
compute T ⊕ tn+1 to get the MAC of the new list.
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A copy of the diagram on the previous page is available on the appendix.

Q6.3 (4 points) Alice computes the MAC for two message lists:

• The list A = [A1, A2, . . . , An] has MAC TA.
• The list B = [B1, B2, . . . , Bn] has MAC TB .

Mallory observes both message lists and both MACs. Mallory does not knowK .

Mallory wants to compute a valid MAC on some message list that is not A or B.

Give a valid (message list, MAC) pair that Mallory could compute.

The message list is:

Solution: [A1, A2, . . . , An, B1, B2, . . . , Bn]

This message list contains all the messages in A and B.

The MAC on the above message list is:

Solution: TA ⊕ TB

This tag can be computed without knowingK . Solutions that try to useK in their expression
for the tag would be incorrect, because Mallory does not knowK .

The MAC of the combined list of messages is:

HMAC(K,A1)⊕ . . .⊕ HMAC(K,An)⊕ HMAC(K,B1) . . .⊕ HMAC(K,Bn)

But we know that

TA = HMAC(K,A1)⊕ . . .⊕ HMAC(K,An)

TB = HMAC(K,B1)⊕ . . .⊕ HMAC(K,Bn)

So we can simplify the MAC expression to TA ⊕ TB .

Note: Answers where the MAC is an expression in terms of K were graded as incorrect,
because Mallory does not knowK (and would not be able to compute such a MAC).
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Q6.4 (4 points) Mallory does not knowK . Mallory wants to compute a valid MAC on [pancake], which
is a list containing only one message (namely “pancake”).

Mallory is allowed to ask for the MAC of two message lists that are not the list [pancake], and
Alice will provide the correct MACs for each of the message lists.

The first message list that Mallory queries for is:

Solution: Many alternative solutions exist for this subpart, but most should follow a similar
idea to the following.

[pancake,waffle]

“waffle” can be replaced with any arbitrary message in this solution.

Alice reports that the MAC of the message list in the box above is T1.

The second message list that Mallory queries for is:

Solution: [waffle]

Alice reports that the MAC of the message list in the box above is T2.

Now, Mallory can compute that the MAC of the message list [pancake] is:

Solution: T1 ⊕ T2

T1 = HMAC(K, pancake)⊕ HMAC(K,waffle)

T2 = HMAC(K,waffle)

If we XOR these two tags together, then the HMAC(K,waffle) cancels, leaving us with just
HMAC(K, pancake), as desired.
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In the next two subparts, Alice modifies her scheme by adding an extra hashing step at the end:

KK

M1 M2 Mn...
HMACK HMAC HMAC

T

t1 t2 tn...

H

1. Compute HMACs on each individual message. ti = HMAC(K,Mi), for 1 ≤ i ≤ n.
2. XOR all the HMAC outputs (ti) together, and hash the result, to get the final MAC output.

T = H(t1 ⊕ t2 ⊕ . . .⊕ tn).

Q6.5 (2 points) Using this new scheme, Alice computes the MAC for the message list [M1, . . . ,Mn].
She sends the message list and the MAC to Bob.

Bob adds a new messageMn+1 to the list, and wants to compute the MAC of the new message list
[M1, . . . ,Mn,Mn+1].

What is the minimum number of HMACs that Bob needs to compute in order to compute the MAC
of the new message list?

(A) 0 (B) 1 (C) 2 (D) n/2 (E) n (F) n+1

Solution: Given T , the output of a hash, there is no way for Bob to learn what the input to
the hash was (the XOR of the t1, . . . , tn). Therefore, Bob would have to recompute t1, . . . , tn
from scratch, and also compute the new tn+1, for a total of n+ 1 HMAC computations.
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Q6.6 (2 points) Does the attack in Q6.3 still work with this new scheme?

(A) Yes, with no modifications.

(B) Yes, if we apply H to the MAC produced by the attack.

(C) No, because Mallory cannot compute the hash without knowingK .

(D) No, because the hash function is one-way.

Solution: Mallory knows the two message lists and MACs:

TA = H(HMAC(K,A1)⊕ . . .⊕ HMAC(K,An))

TB = H(HMAC(K,B1)⊕ . . .⊕ HMAC(K,Bn))

If we try to XOR these two tags together, we would get:

H(HMAC(K,A1)⊕ . . .⊕ HMAC(K,An))⊕H(HMAC(K,B1)⊕ . . .⊕ HMAC(K,Bn))

Which is not the same as the tag on the combined message list:

H(HMAC(K,A1)⊕ . . .⊕ HMAC(K,An)⊕ HMAC(K,B1)⊕ . . .⊕ HMAC(K,Bn))

Option (B) is incorrect because even if we hashed the XOR of the two tags, we would still not
get the correct tag on the combined message list.

In order to get from the XORed tags to the tag of the combined message, we would some-
how have to invert the hashes to recover the XOR of the HMACs, HMAC(K,A1) ⊕ . . . ⊕
HMAC(K,An), but this is not possible because the hash function is one-way.

Option (C) is false because Mallory can compute the hash without knowingK .
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For the rest of the question, consider this scheme for computing a single MAC on a list of n messages
M1,M2, . . . ,Mn. For the rest of the question, you may assume each message is exactly one block long.

AES Encryption AES Encryption AES Encryption

M1 M2 Mn

IV

K K K…

T

T = EK(Mn ⊕ EK(. . .M2 ⊕ EK(M1 ⊕ IV)))

The final MAC output is (T, IV).

Q6.7 (2 points) Select all true statements about the scheme above.

(A) Given the list [M1, . . . ,Mn] and its MAC, it is possible to compute the MAC of list
[M1, . . . ,Mn,Mn+1] without knowingK .

(B) The MAC of list [M1,M2,M3] is equal to the MAC of list [M3,M2,M1].

(C) None of the above.

Solution:

Option (A) is false. As seen in Q6.9, if we want to compute the MAC of the list with an extra
message, we need to compute an AES encryption EK , but we can’t do that unless we knowK .

Option (B) is false. Each AES encryption scrambles the input unpredictably, so the order that
we chain the inputs into the AES encryption blocks affects the final output value.
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Q6.8 (2 points) Suppose that you know theMAC of list [M1,M2,M3] and the MAC of list [M4,M5,M6].
You want to compute the MAC of the merged list [M1,M2, . . . ,M6]. Select all true statements
below.

(A) If you know the individual messages M1,M2, . . . ,M6, you can compute the merged
MAC without knowingK .

(B) If you know K , you can compute the merged MAC without knowing the individual
messages.

(C) None of the above.

Solution: In order to chain the messages together, we would need to perform additional
computation to account for the fact that the two individual MACs have two different IVs,
which requires knowing bothK and the individual messages.

Q6.9 (2 points) You receive the MAC (T, IV) of the message list [M1,M2,M3]. You want to compute a
MAC (T ′, IV) on the new message list [M1,M2,M3,M4]. Select the correct expression for T ′.

(A) T ′ = EK(T )⊕M4

(B) T ′ = DK(T )⊕M4

(C) T ′ = EK(T ⊕M4)

(D) T ′ = DK(T ⊕M4)

Solution: Looking at the diagram, we need to take the latest AES output, namely T , and
chain it forward to the next message. We take the next message M4, XOR it with T , and
compute the AES encryption on the result.

This could also be derived from the equation:

T = EK(M3 ⊕ EK(M2 ⊕ EK(M1 ⊕ IV )))

The expression we want is

EK(M4 ⊕ EK(M3 ⊕ EK(M2 ⊕ EK(M1 ⊕ IV ))))

We can substitute in T to get
EK(M4 ⊕ T )

as desired.
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Q7 Public-Key Cryptography: Does EvanBot Snore? (17 points)
EvanBot decides to make a new authentication scheme that works over insecure connections.

Assume all parties have agreed on generator g for prime modulus p in advance.

To create a new account:

1. The user generates a random number a as their password and sends A = ga mod p.
2. The server stores a mapping between the user and their corresponding A.

To login:

1. The user chooses a random r mod p and sends R = gr mod p to the server.
2. The server chooses a random b mod p and sends b mod p to the user.
3. The user sends z = r + ab (mod p− 1) to the server.
4. The server checks if [ANSWER TO Q7.1].

Q7.1 (2 points) Fill in the missing value in the last step.

(A) gb ≡ A ·Rz mod p

(B) gA ≡ R · b ·A mod p

(C) gz ≡ Rb ·A mod p

(D) gz ≡ R ·Ab mod p

Solution: Note: All work shown is modp.

gz ≡ gr+ab definition of z
≡ gr · gab exponent rule
≡ R · gab definition of R
≡ R ·Ab definition of A
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Q7.2 (3 points) Select all true statements.

(A) r + ab (mod p− 1) hides the value of a, even though the server knows b.

(B) R = gr mod p hides the value of r.

(C) r being chosen randomly prevents replay attacks.

(D) None of the above.

Solution:
Option (A) is correct, since r is randomly derived by the user and unknown to the server,
r + ab (mod p− 1) is effectively an additive one-time pad (mod p− 1).

Option (B) is correct, since the discrete logarithm problem states that it is hard to recover r
from gr mod p.

Option (C) is incorrect because the server doesn’t check or care that R is different between
logins. Randomly choosing R is primarily to provide confidentiality for the user against the
server – if R is reused then the one-time pad protection from Option (A) is compromised.

Replay attacks are prevented by the server sending a random b in Step 2 – see Q7.5 for more
details on why this is the case.
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Q7.3 (2 points) What happens if r is leaked to an eavesdropping attacker that has seen the full login
process?

(A) The attacker can use r to recover the password a.

(B) The attacker can tell when two different logins use the same password.

(C) The attacker can use r to recover b.

(D) The attacker is able to solve the discrete log problem on logins from different users.

Solution: The attacker knows r because it is leaked.

The attacker knows b because it was sent by the server.

The attacker knows z because it was sent by the user.

From the question, we know that z = r + ab (mod p− 1). The attacker knows every value
except a, so the attacker can solve this equation and learn a.

Option (B) is false. First, note that R and b don’t leak any information about the password,
because they’re randomly-derived values. Then, note that z = r + ab involves the random
values r and b, so even if two logins use the same password a, the z values that the attacker
sees will be different.

Option (C) is false. b is sent over the channel, and it is derived separately from r, so there is no
need to use r to recover b.

Option (D) is false. Solving the discrete log problem is infeasible in general. Even if we knew
the value of r for a login, the values of r and R will be different in future logins, so the leaked
value won’t help us solve the discrete log problem.

For the rest of this question, consider this modified, non-interactive authentication scheme.

1. The user chooses a random r mod p and sets R = gr mod p.
2. The user sets b = H(R).
3. The user sends R and z = r + ab (mod p− 1).
4. The server derives b = H(R).
5. The server checks if [ANSWER TO Q7.1].
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Q7.4 (3 points) Which option best explains why this scheme convinces the server that the user knows
a, despite b not being a server-provided random input?

(A) Sending gr mod p forces the user to stick with the same r throughout the protocol.

(B) The hash function is collision resistant, making it hard to find a different value that
hashes to the same b.

(C) An attacker cannot predict the value of b due to the unpredictability of the hash function.

(D) The server can check that b = H(R) because the hash function is publicly known.

Solution: The original (interactive) scheme has a random input b from the server to prevent
trivial forgery attacks (see Q7.6), forcing the attacker to "commit" to their R by sending it to
the server before they receive b. If the user can predict what this b value will be or change
their R after they receive/derive b, they can execute the attack in Q7.6.

Therefore, we need a solution that prevents the user from predicting b or changing their R
afterward. Setting b = H(R) accomplishes both: we can’t change R because the server uses
the "old" value to derive b – changing R to something else would cause the verification to fail.
Moreover, b is unpredictable to the client even though they control R, they can’t predict the
value ofH(R) until they evaluate it (even though they can evaluate it at any time). The key
here is that we would like to choose an R such that R ≡ (AH(R))−1 mod p to execute the
Q7.6 attack, but since we can’t find H(R) until we choose an R we are stuck.

The other options are technically true but not the primary reason outlined above.

Q7.5 (3 points) Is this scheme secure against replay attacks?

(A) Yes, because setting b = H(R) effectively replaces the server’s random input.

(B) Yes, because any change to r will cause b = H(R) to have a wildly different output.

(C) No, because eavesdroppers can record R and z from the login transcript and resend R, z
on their own.

(D) No, because the value of R is the same between authentications made by the same user.

Solution: Since this scheme is completely determined by the user’s actions and the server
only sees the "final" result (R, z), there is nothing stopping an eavesdropper from simply
copying that and resending it themselves.
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Q7.6 (4 points) Consider a modified scheme where Step 2 and Step 4 set b = H(A) instead of b = H(R).
Provide values for R and z that will validate for any given A.

R:

Solution: R = (Ab)−1 mod p

z:

Solution: z = 0

Solution: Other solutions exist, as long as the equation gz ≡ R ·Ab mod p verifies given
their values.

This verifies correctly, using the verification protocol described in Q7.1:

gz
?≡ R ·Ab mod p

g0 ≡ (Ab)−1 ·Ab mod p

g0 ≡ 1 mod p

1 ≡ 1 mod p

Note that (Ab)−1 mod p is the multiplicative inverse ofAb mod p. We know the multiplicative
inverse is guaranteed to exist because p is prime.
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Q7.7 (0 points) This A+ question is not worth points. It can only affect your course grade if you
have a high A and might receive an A+, however, there are other ways to earn an A+ if
you are not able to complete this question. We strongly recommend completing the rest
of the exam first. Ask your proctor for additional paper if you need more space to write.

Design a secure digital signature scheme based on the security of the non-interactive authentication
scheme used from Q7.4 onwards. Your scheme should not significantly deviate from the
non-interactive authentication protocol.

Describe an algorithm to sign a message. The input will be a secret key sk (such that pk =
gsk mod p for publicly-known g, p) and a messageM .

HINT: Use the steps from the non-interactive authentication protocol as a starting point.

Solution: Recall that sk = a and pk = A = ga mod p using notation from the earlier
subparts.

We can proceed as usual in Step 1 by generating a random r mod p and derivingR = gr mod p.

For Step 2, we instead set b = H(M∥R) instead of b = H(R).

For Step 3, we set z = r + ab as usual and output S = (R, z).

Describe an algorithm to verify the signature produced in your given signing algorithm. The input
will be a public key pk, signature S, and messageM .

Solution: Step 1: Derive b = H(M∥R)

Step 2: Verify that gz ≡ R ·Ab

Explain why your algorithm is a secure digital signature scheme, assuming the non-interactive
protocol used from Q7.4 onwards is secure.

HINT: You don’t need to write a formal proof, but you should explain precisely why the changes you
made to turn the authentication scheme into a signature scheme are necessary and secure.

Solution: The original scheme is secure because setting b = H(R) effectively produces a
random value that the user cannot predict ahead of time. The user is also effectively committing
to use the value of R. These two properties allow us to replace the interactive steps of sending
R to the server (commit) and receiving b (random server input) into one user-executed step.

In that case, however, we are simply proving that we know the private key. A signature
scheme requires showing that we know the private key and commit to a specific message.
Therefore, we have to include the message as an argument to the hash function b = H(M,R).
If we didn’t, an attacker could changeM after we derive b to perform an existential forgery
attack. Since b is now a random function of R andM , any party that can output a valid (R, z)
must have knowledge of sk and actively decided to signM .

It turns out that it’s possible to turn any interactive proof of knowledge protocol into a
signature scheme via the Fiat-Shamir transformation!
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Nothing on this page will affect your grade.

Post-Exam Activity: Pumpkin
It’s spooky season! How will you carve this huge pumpkin?

Comment Box
Congratulations for making it to the end of the exam! Feel free to leave any thoughts, comments, feedback,
or doodles here:
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