
CS 161
Fall 2024

Introduction to
Computer Security Midterm

Solutions last updated: October 15th, 2024
Name:

Student ID:

Question: 1 2 3 4

Points: 0 8 20 19

Question: 5 6 7 Total

Points: 16 19 18 100

This exam is 110 minutes long. For questions with
circular bubbles, select only one choice.

Unselected option (completely unfilled)
Only one selected option (completely filled)
Don’t do this (it will be graded as incorrect)

For questions with square checkboxes, you may
select one or more choices.

You can select
multiple squares (completely filled)

Anything you write outside the answer boxes or
you cross out will not be graded. If you write mul-
tiple answers, your answer is ambiguous, or the
bubble/checkbox is not entirely filled in, we may
grade the worst interpretation.

Pre-exam activity (0 points):

Across:
(2) Block cipher previously known as Rijndael
(4) EvanBot’s favorite food (singular)
(7) Randomizes addresses for each program execution
(8) x ̸= y, H(x) = H(y)

Down:
(1) Hard to find x given H(x)
(3) Created by Rivest, Shamir, and Adleman
(5) The CS 161 mascot
(6) Used to encrypt and decrypt messages
(9) Perfectly-secure encryption

Q1 Honor Code (0 points)
I understand that I may not collaborate with anyone else on this exam, or cheat in any
way. I am aware of the Berkeley Campus Code of Student Conduct and acknowledge
that academic misconduct will be reported to the Center for Student Conduct and may
further result in, at minimum, negative points on the exam.

Read the honor code above and sign your name:

Midterm - Page 1 of 26



Q2 True/False (8 points)
Each true/false is worth 1 point.

Q2.1 The employee entrance to the Caltopian Post Office is protected by a 20-digit keypad code that
changes daily.

True or False: This violates Consider Human Factors.

(A) True (B) False

Solution: True. It’s unreasonable to expect people to memorize a 20-digit code.

Q2.2 Caltopian Army counterintelligence installs devices on all secure networks to look for abnormally
high levels of outgoing data.

True or False: This is an example of Detect If You Can’t Prevent.

(A) True (B) False

Solution: True, since even though we didn’t prevent the sensitive data being exfiltrated to
the adversary, we would detect something is wrong.

Suppose we have a little-endian C program with a local variable char easter_egg[32]. Consider
the following possible GDB output after running the command x/8wx easter_egg:

0xfffff000: 0x486F6D65 0x20706167 0x6520736F 0x75726365
0xfffff010: 0x20436865 0x636B2047 0x69744875 0x20707232

Q2.3 True or False: The last four bytes of easter_egg equal the word 0x20707232.

(A) True (B) False

Solution: True.

Q2.4 True or False: The stack is alwaysmarked non-executable when non-executable pages is enabled.

(A) True (B) False

Solution: True. All writable pages (i.e., all of the stack and the heap) are marked non-
executable.

Midterm - Page 2 of 26



Q2.5 True or False: When the ESP is moved up during function return, all memory that ends up below
the ESP is set to zero.

(A) True (B) False

Solution: False. The stack pointer (ESP) is updated, but memory is not modified. Therefore,
the memory below the ESP contains old stale data that is (normally) ignored by the program.

Q2.6 True or False: One-time pads require both a random key and a random IV to be secure.

(A) True (B) False

Solution: False. They don’t use a IV. No IV is needed, since a one-time pad is designed to be
used to encrypt only a single message.

Q2.7 True or False: Small changes to the input of a hash function usually result in only minor changes
to its output.

(A) True (B) False

Solution: False

Q2.8 True or False: The generator and modulus (g, p) in Diffie-Hellman must not be reused between
key exchanges.

(A) True (B) False

Solution: False. It is safe for everyone to use the same g, p value.

Midterm - Page 3 of 26



Q3 EvanBot’s Folly: Memory Safety (20 points)
EvanBot accidentally deleted the C library files responsible for fgets! They’ve taken it upon themselves
to code a replacement:

1 void efgets(char* ptr , size_t maxlen) {
2 int c, i;
3
4 for (i = 0; i < maxlen; i++) {
5 c = fgetc(stdin); // Get one character from stdin
6 if (c == EOF)
7 break;
8
9 ptr[i] = c;
10 }
11 ptr[maxlen] = '\0';
12 }

Assumptions:
• All memory safety defenses are disabled.
• There is no compiler padding.
• You may use SHELLCODE as a 16-byte shellcode.
• efgets can be called like a C standard library function (similar to gets, etc).

EvanBot creates a sample program to demonstrate the use of efgets:

1 int main() {
2 char buf [16];
3 efgets(buf , 24);
4 return 0;
5 }

Q3.1 (2 points) Assume you have run this sample program using GDB and paused on Line 3 of main
(before efgets is called). You run the info frame command and see the following output (some
lines excluded for brevity):

eip = 0x0100adb0 in main (sample.c:3); saved eip = 0x0100adfc

...

Saved registers:

ebp at 0xffffb550, eip at 0xffffb554

What is the address where RIP of main is stored on the stack?

(A) 0x0100adb0

(B) 0x0100adfc

(C) 0xffffb550

(D) 0xffffb554

(E) 0xffffb558

(F) 0xffffb55c

Midterm - Page 4 of 26



The efgets function is reproduced for your convenience:

1 void efgets(char* ptr , size_t maxlen) {
2 int c, i;
3
4 for (i = 0; i < maxlen; i++) {
5 c = fgetc(stdin); // Get one character from stdin
6 if (c == EOF)
7 break;
8
9 ptr[i] = c;
10 }
11 ptr[maxlen] = '\0';
12 }

Q3.2 (3 points) You now run this program on a second machine where the RIP of main is stored at a
different address, specifically, at address 0xffffff18. (Ignore the GDB output in Q3.1 from here
on. Don’t forget that SHELLCODE is 16 bytes long.)

Select the correct option for an input to stdin that causes the program to execute SHELLCODE.

(A) SHELLCODE + 'A'*4 + '\x18\xff\xff\xff'

(B) SHELLCODE + '\x18\xff\xff\xff'

(C) 'A'*20 + SHELLCODE

(D) SHELLCODE + 'A'*4 + '\x04\xff\xff\xff'

Solution: With this input, efgets will write SHELLCODE into buf, then write 'A'*4 into the
next 4 bytes, i.e., the SFP for main, then write 0xFFFFFF04 (recall that little-endian stores the
least significant byte first) into the next 4 bytes, i.e., the RIP for main. When main returns, the
CPU will branch to the value stored in the RIP for main, i.e., to address 0xFFFFFF04. If we
draw out the stack diagram, we find that buf starts 20 bytes before the address where the RIP
for main is stored, i.e., buf starts at address 0xFFFFFF04. Therefore, when main returns, the
CPU branches and starts running the code stored in buf — which now contains SHELLCODE.

Q3.3 (2 points) Assuming that the correct exploit was given in the previous subpart, when will
SHELLCODE be executed?

(A) Immediately after fgetc returns

(B) Immediately after efgets returns

(C) During the execution of efgets

(D) Immediately after main returns

Solution: See solution for Q3.2.

Midterm - Page 5 of 26



Q3.4 (2 points) Which of the following changes would prevent the correct exploit from Q3.2 (without
modifications) from executing SHELLCODE? Select all that apply.

(A) Enabling stack canaries

(B) Enabling non-executable pages

(C) Removing the EOF check on Line 7

(D) None of the above

Solution: efgets writes contiguously, so stack canaries would stop this attack: the canary
would get overwritten, so before main returns, the canary-check would detect this and ter-
minate without returning. Non-executable pages would prevent executing SHELLCODE from
buf. The EOF check won’t change anything because this input is already 24 bytes long, and
maxlen = 24.

Midterm - Page 6 of 26



Impressed with your previous success, EvanBot decides to issue you a new challenge program with
ASLR enabled!

1 void run_test () {
2 char buf [16];
3 efgets(buf , 16);
4 }
5
6 int main() {
7 run_test ();
8 return 0;
9 }

Assume that EvanBot’s program is the only pro-
gram that modifies stack memory in this system,
including memory that ends up below the ESP.

Stack at Line 3 of efgets

RIP of main

(1)

RIP of run_test

SFP of run_test

(2)

maxlen

(3)

RIP of efgets

SFP of efgets

c

i

Q3.5 (2 points) Fill in the stack diagram, assuming the program is paused on the third line of efgets.

(A) (1) SFP of main (2) buf (3) ptr
(B) (1) SFP of main (2) buf (3) c
(C) (1) buf (2) c (3) ptr
(D) (1) buf (2) ptr (3) c

Q3.6 (2 points) Which vulnerability is present in the code?

(A) Off-by-one

(B) Signed/unsigned vulnerability

(C) ret2ret

(D) Return-oriented programming

Solution: The vulnerability is that efgets writes the '\0' byte one after the end of buf.

Midterm - Page 7 of 26



Q3.7 (7 points) [Warning: This part is hard; consider coming back to it if you are stuck.]

Give an input to stdin that would cause SHELLCODE to be executed by the new program with
probability ≥ 1/256.

Solution: SHELLCODE

The attack will be successful (i.e., SHELLCODE will be executed) if the least significant byte of the
value initially stored in SFP of run_test is equal to which of the following?

(A) 0x00
(B) 0x04

(C) 0x12
(D) 0x20

(E) 0x24
(F) 0x32

(G) 0x36
(H) 0x64

Solution: Suppose that the address for the SFP of main is 0x0124. Then the value initially stored
in the SFP of run_test is 0x0124 (since it points to the SFP of its caller). Drawing out the stack
frame and working out the address of all of the other entries on the stack, we find that it looks like
this when efgets starts executing:

Address Entry Value

0x0128 RIP of main

0x0124 SFP of main

0x0120 RIP of run_test

0x011C SFP of run_test 0x0124

0x010C buf

0x0108 maxlen 0x0010

0x0104 ptr 0x010C

0x0100 RIP of efgets

0x00FC SFP of efgets 0x011C

0x00F8 c 0x0000

0x00F4 i 0x0000

When line 11 of efgets executes, it writes '\0' one past the end of buf, i.e., to address 0x011C,
i.e., to the first byte (least significant byte) of the SFP of run_test. Since that word on the stack
previously contained the value 0x0124, it now contains the value 0x0100. So after efgets returns
and run_test restores %esp, the call stack looks like this:

Midterm - Page 8 of 26



Address Entry Value

0x0128 RIP of main

0x0124 SFP of main

0x0120 RIP of run_test

0x011C SFP of run_test 0x0100

0x010C buf SHELLCODE

0x0108 maxlen 0x0010

0x0104 ptr 0x010C

0x0100 RIP of efgets

0x00FC SFP of efgets 0x011C

0x00F8 c 0x0000

0x00F4 i 0x0000

At this point %esp has the value 0x0104, so values below that on the stack are stale, but they remain
in memory (they are not erased or overwritten with zeros; see Q2.5). Next run_test executes
mov %ebp, %esp and pop %ebp from the epilogue, restoring %esp and setting %ebp to the value
0xFF00. At this point the value of %ebp has been corrupted by the off-by-one vulnerability. Next
run_test executes ret and returns back to main.

Next main executes mov %ebp, %esp and pop %ebp from the epilogue. The first instruction sets
%esp to 0x0100, so now %esp has been corrupted, and all subsequent use of the stack will be using
the wrong stack pointer. The pop %ebp instruction now works relative to the current (corrupted)
value of %esp: thus it reads the 4 bytes at address 0x0100, stores them into %ebp, and adds 4 to
%esp. Afterwards %esp contains the value 0x0104. Notice that address 0x0104 corresponds to the
place where ptr was stored on the stack, and the value stored there is the address of buf, i.e.,
0x010C. Finally, main executes the ret instruction to return. The ret instruction looks at the
address given by %esp (which, as a reminder, has been corrupted), so it looks at address 0x0104,
reads the value stored there (namely, 0x010C), and the CPU starts executing code at that location,
i.e., at address 0x010C. But looking at our chart above, we see that address 0x010C corresponds to
the address of buf, so the CPU starts executing instructions from inside buf. Thanks to our choice
of input, buf contains SHELLCODE, so the CPU starts executing the instructions of SHELLCODE.

You can see that this attack relied on the initial value stored in the SFP of run_test to have least
significant byte 0x24, but the more significant bytes (e.g., 0x01 in this example) don’t matter — all
that matters is its least significant byte.

Intuitively, if the initial value of SFP of run_test starts with 0x24, then when it is overwritten
with '\0' (i.e., 0x00), the value stored there will be 0x24 smaller. That means that by the time we
return twice, the instructions of main are looking for the stack frame in the wrong place: they are
looking 0x24 bytes lower than they should be. At 0x24 bytes lower than the RIP of main, we find

Midterm - Page 9 of 26



ptr, and the value stored in ptr is (conveniently) the address of buf, i.e., the address SHELLCODE.
In other words, when main returns, because it is looking in the wrong place for the return address,
instead of returning to the address in RIP of main, it’ll return to the address of SHELLCODE.

Midterm - Page 10 of 26



Q4 Copycat - Memory Safety (19 points)

1 void foo(uint8_t offset , char* buf_ptr) {
2 int x = 0x11223344;
3
4 memcpy(buf_ptr + offset , &x, 8);
5 }
6
7 int main() {
8 char buf [132];
9 int8_t offset = 0;
10
11 gets(buf);
12 fread(offset , 1, 1, stdin);
13
14 if (offset > 20)
15 return 0;
16
17 foo(offset , buf);
18
19 return 0;
20 }

Stack at Line 4

RIP of main

SFP of main

Canary

buf

offset

(1)

(2)

RIP of foo

SFP of foo

(3)

x

Assumptions:
• Stack canaries are enabled, but all other memory safety defenses are disabled.
• There is no compiler padding.
• There is shellcode already stored at address 0xDEADBEEF.
• uint8_t and int8_t are the C types for an 8-bit unsigned/signed integer, respectively.

Q4.1 (2 points) What values go in blanks (1) through (3) in the stack diagram above?

(A) (1) Canary (2) offset (3) buf_ptr
(B) (1) Canary (2) buf_ptr (3) buf_ptr
(C) (1) offset (2) buf_ptr (3) Canary
(D) (1) buf_ptr (2) offset (3) Canary

Midterm - Page 11 of 26



Q4.2 (2 points) Which vulnerability is present in the code?

(A) Off-by-one
(B) Signed/unsigned vulnerability

(C) ret2ret
(D) Out-of-bounds read

Solution: The vulnerability is that offset is declared as a signed int in main, but as an
unsigned int in foo. In particular, if offset is negative in main, then the if-statement on line
14 will be false, so foo will be called; but then when the negative value is cast to an unsigned
int (uint8_t), it becomes a large-ish positive value, causing the memcpy to write after the end
of the buffer.

Q4.3 (1 point) True or False: The value of the stack canary is the same for each different function frame
in the same program execution.

(A) True (B) False

In the next two subparts, provide inputs that would cause the program to execute SHELLCODE.

If a part of the input can be any non-zero value, use 'A'*n to represent n bytes of garbage.

Q4.4 (3 points) Input to gets at Line 11:

Solution: 'A'*140 + '\xEF\xBE\xAD\xDE' + '\n'

Midterm - Page 12 of 26



Q4.5 (5 points) Input to fread at Line 12 (in hexadecimal):

Solution: '\x80'

Solution: The call to gets will overwrite the canary with 'A'*4, overwrite the SFP of
main with 'A'*4, and then overwrite the RIP of main with '\xEF\xBE\xAD\xDE', i.e., with
0xDEADBEEF. This looks promising, but the canary for main has been corrupted.

Next, offset will get set to 0x80; considered as a int8_t, this is a negative number (−127),
so the if-statement follows the else branch. Finally, foo is called, and now offset is cast to
uint8_t, so it is considered as the large positive number 0x80.

The call to memcpy writes 0x11223344 to buf + 0x80, i.e., to the last 4 bytes of buf, then
it writes the 4 bytes above x to buf + 0x84. The 4 bytes above x are the canary for foo,
and the address buf + 0x84 refers to the address of the canary for main. Therefore, the
memcpy copies the canary for foo (which is uncorrupted) over the canary for main (which
was previously corrupted, but is now restored thanks to this step). This restores the canary to
main to its correct value.

Finally, once main returns, the CPU will jump to the address 0xDEADBEEF (since this was
stored over the RIP for main by gets), and the stack corruption will not be detected by the
canary (since the canary was restored to its correct value).

Q4.6 (3 points) Which of the following modifications would prevent this exploit (without any modifica-
tions) from working? Select all that apply.

(A) Generating the canary such that its least-significant byte is a null terminator.

(B) Changing the type of offset on Line 9 to uint8_t.

(C) Changing the condition on Line 14 to offset > 128.

(D) None of the above

Solution: As described in the solution for 4.5, we are using memcpy to copy the canary for
foo into the canary slot for main.

memcpy does not stop copying on a null terminator, so changing the canary to have a null
terminator does not prevent the exploit.

If we change offset type in main to be unsigned uint8_t, then we can no longer do our
signed/unsigned exploit and can’t copy into buf + 128 as required.

Changing the condition to offset > 128 does not affect the exploit, as our 0x80 input still
passes the check.

Midterm - Page 13 of 26



Q4.7 (3 points) Select all values for the size of buf such that it is still possible to exploit this code,
assuming you are able to pick new inputs.

(A) 4

(B) 20

(C) 24

(D) 64

(E) 128

(F) 256

Solution: We require that offset be able to go exactly 4 bytes before the end of the buffer.
Since 0 ≤ offset ≤ 20 and 128 ≤ offset ≤ 255 by the size check, we have the 4 ≤
len(buf) ≤ 24 and 132 ≤ len(buf) ≤ 259.

Midterm - Page 14 of 26



Q5 AES-RFM — Symmetric Cryptography (16 points)
EvanBot invents a new block cipher mode of operation: AES Repeated Feedback Mode.

The encryption formulas for AES-RFM are as follows:

C1 = EK(IV )⊕ P1

Ci = Pi ⊕ EK(IV ⊕ C1 ⊕ · · · ⊕ Ci−1)

Q5.1 (2 points) Select the correct decryption formula for the i-th (i ≥ 2) plaintext block in AES-RFM.

(A) Pi = Ci⊕EK(IV ⊕C1⊕· · ·⊕Ci−1)

(B)Pi = Ci−1⊕EK(IV ⊕C1⊕· · ·⊕Ci−1)

(C) Pi = DK(Ci)⊕IV ⊕C1⊕· · ·⊕Ci−1

(D) Pi = Ci⊕DK(IV ⊕C1⊕· · ·⊕Ci−1)

Solution: Starting from Ci = Pi ⊕ EK(IV ⊕ C1 ⊕ · · · ⊕ Ci−1), we XOR EK(IV ⊕ C1 ⊕
· · · ⊕ Ci−1) on both sides to isolate Pi = Ci ⊕ EK(IV ⊕ C1 ⊕ · · · ⊕ Ci−1).

Midterm - Page 15 of 26



Q5.2 (3 points) Alice has a 4-block message (P1, P2, P3, P4). She encrypts this message with AES-RFM
and obtains the ciphertext C = (IV, C1, C2, C3, C4), which she then sends to Bob.

During transit, network errors flip a single bit in C1. That is, Bob receives the ciphertext
C ′ = (IV, C1 ⊕ 1, C2, C3, C4).

What message will Bob compute when he decrypts the modified ciphertext C ′?

G represents some unpredictable “garbage” output (individual G blocks do not necessarily have
the same value).

(A) (G,G,G,G)

(B) (G,P2, P3, P4)

(C) (P1, G,G,G)

(D) (P1 ⊕ 1, G,G,G)

(E) (P1 ⊕ 1, P2, G,G)

(F) (P1, P2 ⊕ 1, G,G)

Solution: Let’s consider what happens when we try to decrypt (IV, C1⊕1, C2, C3, C4). First,
P ′
1:

P ′
1 = C ′

1 ⊕ EK(IV ′)

= (C1 ⊕ 1)⊕ EK(IV )

= 1⊕ (C1 ⊕ EK(IV ))

= P1 ⊕ 1

Now for P ′
2:

P ′
2 = C ′

2 ⊕ EK(IV ′ ⊕ C ′
1)

= C2 ⊕ EK(IV ⊕ C1 ⊕ 1)

Since IV ⊕ C1 ̸= IV ⊕ C1 ⊕ 1, the value of EK(IV ⊕ C1 ⊕ 1) is going to be very different
from EK(IV ⊕ C1), making P ′

2 effectively pseudorandom garbage. The same will happen
with all other ciphertext changes, so all P ′

i with i > 1 will be garbage.

Midterm - Page 16 of 26



Alice has a 3-block message (P1, P2, P3). She encrypts this message with AES-RFM and obtains the
ciphertext C = (IV, C1, C2, C3).

As Mallory, you will modify the ciphertext C in transit to C ′, and you wish to choose C ′ so it decrypts
to P ′ = (X,Y, 1) (where X and Y can be any value, garbage or otherwise). In other words, you
want to ensure that the last block of P ′ will be 1, but you don’t care what the first two blocks of P ′

turn out to be. You have access to the original message (P1, P2, P3).

Q5.3 (6 points) Select values for the modified ciphertext C ′ = (IV ′, C ′
1, C

′
2, C

′
3) such that Bob will

decrypt C ′ to P ′ = (X,Y, 1).

Each value below will be represented as the XOR of multiple variables. Select as many as you need.
For example, if you want to set IV ′ = P1 ⊕ C2, then bubble in P1 and C2.

IV ′ is equal to the XOR of:

(A)
P1

(B)
P2

(C)
P3

(D)
IV

(E)
C1

(F)
C2

(G)
C3

(H)
1

C ′
1 is equal to the XOR of:

(A)
P1

(B)
P2

(C)
P3

(D)
IV

(E)
C1

(F)
C2

(G)
C3

(H)
1

C ′
2 is equal to the XOR of:

(A)
P1

(B)
P2

(C)
P3

(D)
IV

(E)
C1

(F)
C2

(G)
C3

(H)
1

C ′
3 is equal to XOR of:

(A)
P1

(B)
P2

(C)
P3

(D)
IV

(E)
C1

(F)
C2

(G)
C3

(H)
1

Solution: Our core idea here is that the value of P ′
i is determined by C ′

i ⊕EK(IV ′ ⊕ C ′
1 ⊕

· · · ⊕ C ′
i−1). If we can keep the value of EK(IV ⊕ C1 · · · ⊕ Ci−1) constant, then any change

in Ci will be reflected in P ′
i . For example, if we have IV through Ci−1 be the same and set

C ′
i = Ci ⊕ 5, then

P ′
i = (Ci ⊕ 5)⊕ EK(IV ⊕ C1 · · · ⊕ Ci−1)

= 5⊕ (Ci ⊕ EK(IV ⊕ C1 · · · ⊕ Ci−1))

= Pi ⊕ 5

Midterm - Page 17 of 26



Solution: Applying this to our concrete case, if we XOR C ′
3 with P3 ⊕ 1, that will cancel out

the old value and replaces it with 1:

P ′
3 = (C3 ⊕ P3 ⊕ 1)⊕ EK(IV ⊕ C1 ⊕ C2)

= 1⊕ P3 ⊕ (C3 ⊕ EK(IV ⊕ C1 ⊕ C2))

= 1⊕ P3 ⊕ P3

= 1

Q5.4 (5 points) Which values of P ′ can Mallory cause Bob to decrypt to, given that she can modify C
and knows the original value of P ? As in the previous subpart, X and Y represent values that
Mallory doesn’t need to control or predict and might be garbage.

Assume that none of the original Pi values were equal to 1.

(A) (X, 1, Y )

(B) (P1, P2, 1)

(C) (P1, 1, P2)

(D) (1, P2, P2)

(E) (P1, 1, X)

(F) (1, 1, X)

Solution: Intuitively, we can use the idea from the previous subpart to set any specific
plaintext block to a value we want.

However, all plaintext blocks after that block will become garbage. Note that the plaintext
blocks before this are unaffected, since we kept the ciphertext blocks before this the same.

For example, C ′ = (IV, C1, C2⊕P2⊕1, G) decrypts to P ′ = (P1, 1, X) (G can be any value).

Midterm - Page 18 of 26



Q6 To HMAC and Back — Cryptography (19 points)
For each of the following subparts, indicate whether the given construction is an EU-CPA secure MAC.

Assume that the messageM is variable length and does not require padding.

Q6.1 (2 points) MAC(K,M) = H(M)⊕H(K).

(A) Secure (B) Insecure

Solution: An attacker can ask for the MAC on X , receive H(X) ⊕H(K), and XOR with
H(X) to find H(K). Then they can compute the MAC tag for every other message.

Q6.2 (2 points) MAC(K1,K2,M) = H(K2∥H(K1∥M)).

(A) Secure (B) Insecure

Solution: This is the same as NMAC (a secure precursor of HMAC).

Q6.3 (2 points) MAC(K,M) = HMAC(K,M)∥M .

(A) Secure (B) Insecure

Solution: MACs don’t require or promise confidentiality. We can treat this as HMAC if
we just discard the last half. Predicting the MAC tag with this scheme is at least as hard as
predicting the HMACMAC tag (because an attacker must predict strictly more).

Q6.4 (2 points) MAC(K,M) = (IV, Cn) where Cn is the last block of the AES-CBC encryption of
H(M) under keyK , and IV is the corresponding randomly-generated IV.

For this subpart only, assume the cryptographic hash function H has an output size of 128 bits.

(A) Secure (B) Insecure

Solution: An attacker can edit the IV. For instance, given a MAC tag (IV, Cn) on P =
(P1, . . . , Pn), the attacker can modify the message to P ′ = (P ′

1, P2, . . . , Pn) and compute a
valid MAC tag on this message as (IV ⊕ P1 ⊕ P ′

1, Cn). In this way, the attacker obtains a
valid MAC tag on the new message P ′, which violates EU-CPA.

Midterm - Page 19 of 26



Q6.5 (5 points) MAC(K,M) = Cn, where Cn is the last block of the encryption ofM with AES-CFB
under keyK and IV = 0. For example,MAC(K, [M1,M2]) = M2 ⊕ EK(M1 ⊕ EK(0)):

GivenM = (M1,M2) and its MAC T , provide a new two-block messageM ′ = (M ′
1,M

′
2) and

its MAC T ′. (You must not useM ′ = M .)

Provide a value for M ′:

Solution: (M1,M2 ⊕ T )

Provide a value for T ′:

Solution: 0

Solution: This is one of many alternate solutions. The idea is that if we have the first
block ofM ′ (namely,M ′

1) equal to the first block ofM (namely,M1), then the intermediate
value EK(EK(0) ⊕ M ′

1) will be the same as it was in the MAC of M , i.e., the same as
EK(EK(0)⊕M1). That is, the value that gets XOR’d withM2 at the end will be the same for
both.

Now T = M2⊕EK(M1⊕EK(0)). SinceEK(M1⊕EK(0))will be constant between the two
messages if we ensure M ′

1 = M1, changing M2 will change T in the same way. For example,
to set T ′ = T ⊕ 1 we would set M ′

2 toM2 ⊕ 1.

Midterm - Page 20 of 26



Q6.6 (6 points) Define AES-AND-MAC(K,M) = Cn, whereCi = EK(Mi∧Ci−1) andC1 = EK(M1).

∧ represents logical AND between two 128-bit blocks (bitstrings).

You will describe an attack on this MAC. First, you request a MAC over a one-block message M
of your choosing.

Provide a value for M :

Solution: M = (0)

You then receive a MAC T overM . Given (M,T ) from the previous step, provide a new two-block
message M ′ with MAC T ′ that you can compute from the information available to you (without
knowing the key K).

HINT:M must not equalM ′, but T can equal T ′.

Provide a value for M ′:

Solution: M ′ = (X, 0) where X can be anything.

Alternatively,M ′ = (0, !T ) (i.e. logical NOT T , since T∧!T = 0)

Provide a value for T ′:

Solution: T . This works becauseM1 = M ′
1 ∧M ′

2 = 0, so in both cases the correct tag will
be T = EK(0).

Midterm - Page 21 of 26



Q7 Opaque Only Once — Digital Signatures (18 points)
The rise of quantum computing worries EvanBot, who decides to invent a post-quantum signature
scheme using only hash functions.

x0 H(x0)
H

H2(x0)

S[0]

H H · · · H
H256(x0)

PK[0]

x1 H(x1)

S[1]

H
H2(x1)

H H · · · H
H256(x1)

PK[1]

Pictured: A signature over the two-byte messageM = [0x02, 0x01], with signature and public key:
S = [H2(x0), H(x1)], PK = [H256(x0), H

256(x1)].

Clarification after exam: The example pictured above has a bug: it doesn’t hash the message. The real
scheme hashes the message first and then signs the bytes of the hash.

Key Generation:

1. Generate a list of 32 randomly-generated 256-bit values xi: [x0, x1, . . . , x31] as the private key.
2. Derive the public key by applying H to each xi 256 times: [H256(x0), H

256(x1), . . . ,H
256(x31)].

Signing a Message:

1. Hash themessageM to receive a 256-bit hashH(M). SplitH(M) into 32 bytesni: [n0, n1, . . . , n31].
2. For each i ∈ [0, 31], apply ni iterations of H to xi to receive Hni(xi).
3. Publish the signature S = [Hn0(x0), H

n1(x1), . . . ,H
n31(x31)].

Verifying a Signature:

1. Given a signature S, let S[i] refer to the i-th entry in the signature (Hni(xi)). Let PK[i] refer to
the i-th entry in the public key (H256(xi)).

2. For each i ∈ [0, 31], [ANSWER TO Q7.1].

Midterm - Page 22 of 26



Q7.1 (3 points) Let ni be the i-th byte of H(M), treated as an unsigned 8-bit integer.

Select the best option to fill in the blank from the signature verification protocol.

(A) Let T = Hni(xi). Verify that T = S[i].
(B) Let T = H256−ni(S[i]). Verify that T = PK[i].
(C) Let T = (H−1)256−ni(PK[i]). Verify that T = S[i].
(D) Let T = H256(xi). Verify that T = PK[i].

Solution: We know that S[i] = Hni(xi) and PK[i] = H256(xi) from the definition provided
in the start of the question. The core idea behind this scheme is that only the original public
key owner knows xi, and only they can evaluate Hni(x) for 0 ≤ ni ≤ 255. Other parties
know H256(xi) but can’t invert the hash to get any of the earlier values.

To verify thatHni(xi) is trulyH applied ni times to xi, we use that fact that we knowH256(xi)
and that H256(xi) = H256−ni(Hni(xi)). By hashing S[i] the remaining 256− ni times, we
should get the original public key value H256(xi).

Q7.2 (4 points) Which properties are necessary conditions for the signature scheme to be secure?

(A) H,H2, . . . ,H256 are one-way

(B) H is collision resistant

(C) H is secure against length-extension
attacks

(D) The message never has a byte of all
ones
(E) The output of H never has a byte of
all zeroes
(F) None of the above

Solution: If H, · · · , H256 aren’t one-way, then an attacker can take S[i] = Hni(xi) and
recover either xi, or some other preimage — some other value that is just as good as xi (as it
hashes to the same thing as xi). Given all the xi values, the attacker can create a signature on
any arbitrary message by following the original protocol.

If H is not collision-resistant, then an attacker can find a collision H(M) = H(M ′), ask for
the signature onM , and use it as a valid signature onM ′.

Length-extension attacks aren’t relevant here, because the internal steps are over constant-
length inputs (since we hash the message, and the output of the hash function has a constant
length).

It does not matter if the message or its hash has a byte of all zeroes or ones, since those value
still lie in the range 0 ≤ ni ≤ 255, and Hni(xi) can’t be reached from H256(xi).

Midterm - Page 23 of 26



Q7.3 (6 points) Alice sends Bob a messageM with signature S, generated with her private key. Mal-
lory is eavesdropping on their conversation and learns (M,S). Mallory wishes to find a new
message/signature pair (M ′, S′) that verifies under Alice’s public key PK .

Let ni, n′
i be the i-th bytes, parsed as an 8-bit unsigned integer, for H(M), H(M ′) respectively.

What must be true for all i ∈ [0, 31] for Mallory to succeed in forging a signature for M ′? Select
the most accurate option.

(A) ni ≤ n′
i

(B) ni ≥ n′
i

(C) ni = n′
i

(D) ni < n′
i

(E) ni > n′
i

(F) n′
i < PK[i]

Assuming the message M ′ satisfies the correct condition, Mallory then calculates S′. For each
i ∈ [0, 31], give an expression for S′[i], in terms of ni, n

′
i, H, S[i], PK[i] (you do not need to use

all those variables):

Solution: Hn′
i−ni(S[i])

To forge a signature on M ′, we need to find S′[i] = Hn′
i(xi) where n′

i is the i-th byte of
H(M ′). We don’t know xi, so we can’t evaluate Hn′

i(xi) directly. However, we do know
S[i] = Hni(xi), and if n′

i ≥ ni, then Hn′
i = Hn′

i−ni(Hni(xi)) = Hn′
i−ni(S[i]).

Q7.4 (2 points) Assuming H is a secure hash function, what is the approximate probability of the
condition in the previous subpart being true for two randomly-selected messagesM,M ′?

(A) 2−8

(B) 2−16

(C) 2−32

(D) 2−64

(E) 2−128

(F) 2−256

Solution: The probability that k′i ≥ ki is approximately 1
2 , since both are (pseudo-)randomly

picked from the same uniform range.

Using the (reasonable) assumption that each byte is independent, with 32 bytes that comes
out to 1

232
= 2−32.

Midterm - Page 24 of 26



Q7.5 (3 points) Select all options which would decrease the probability of the condition being true.

(A) Increasing the length of each xi to be greater than 256 bits.
(B) Using 2 bytes for each ni instead of 1 byte (e.g., n0 would now be the first 2 bytes ofH(M)
parsed as a 16-bit integer). Assume the public key values change to H216(xi) accordingly.
(C) Using a hash function with a 512-bit output (assume that there would be 64 1-byte entries
in S and PK rather than the original 32 entries accordingly).
(D) None of the above

Solution: Option (C) reduces the probability of the condition to about 2−64, since we “flip
the coin” on n′

i ≥ ni twice as much.

Midterm - Page 25 of 26



Nothing on this page will affect your grade.

Post-Exam Activity
Help EvanBot out by drawing some toppings on their pancakes!

Comment Box
Congratulations for making it to the end of the exam! Feel free to leave any thoughts, comments, feedback,
or doodles here:

Midterm - Page 26 of 26


