
CS 161 Introduction to
Computer Security

Final
Fall 2025

Name:

Student ID:

This exam is 170 minutes long. There are 11

questions of varying credit. (100 points total)

Question: 1 2 3 4 5 6 7 8 9 10 11 Total

Points: 0 8 8 8 9 7 9 16 11 12 12 100

For questions with circular bubbles, you may select only

one choice.

Unselected option (Completely unfilled)

Don’t do this (it will be graded as incorrect)

Only one selected option (completely filled)

For questions with square checkboxes, you may select one

or more choices.

You can select

multiple squares (completely filled).

(Don’t do this)

Anything you write outside the answer boxes or you cross

out will not be graded. If you write multiple answers, your

answer is ambiguous, or the bubble/checkbox is not entirely

filled in, we may grade the worst interpretation.

Pre-Exam Activity: Caesar Cipher (0

points):

EvanBot wishes to share the following

message, but doesn’t want it to fall into the

wrong hands. Decipher away!

Hint: Shift +3

J →

R →

R →

G →

O →

X →

F →

N →

Q1 Honor Code 📜 (0 points)

I understand that I may not collaborate with anyone else on this exam, or cheat in any

way. I am aware of the Berkeley Campus Code of Student Conduct and acknowledge that

academic misconduct will be reported to the Center for Student Conduct and may further

result in, at minimum, negative points on the exam.

Read the honor code above and sign your name:

Page 1 of 37

This content is protected and may not be shared, uploaded, or distributed.

Q2 Potpourri 🍲 (8 points)

Q2.1 (0.5 points) True or False: The principle of “Least Privilege” dictates that a program or user should

only be granted the specific permissions required to perform their intended task and nothing more.

True False

Solution: This is true. The principle of Least Privilege explicitly states that you should consider

what permissions an entity needs to do its job correctly. Granting unnecessary permissions is

dangerous because a malicious or compromised program could exploit those extra privileges

against you.

Q2.2 (0.5 points) True or False: Using GDB, if you want to

inspect the contents of the buffer buf in the code to the

right, you can break at line 7 and then run the command

x/16x buf.

True False

Solution: False. buf is a local variable inside func. At

line 6 (inside vulnerable), buf is out of scope and likely

does not even exist on the stack yet. You would need to

break inside func (e.g., line 3) to inspect buf.

You run the code in GDB, break at line 7, and run info frame.

You receive the output to the right.

Q2.3 (0.5 points) True or False: The RIP of vulnerable() is

at the address 0xffffdc5c.

True False

Solution: The GDB output indicates that eip was saved

at address 0xffffdc5c; the RIP is the saved value of

eip.

Q2.4 (0.5 points) True or False: The value of the SFP of func()

is 0xffffdc58.

True False

Solution: The GDB output indicates that ebp was saved

at address 0xffffdc58, i.e., that the SFP of vulnerable

is stored at address 0xffffdc58. What about the SFP of

func? The SFP of func is stored at a different address

(lower on the stack), and it points to the SFP of its caller,

i.e., it points to the SFP of vulnerable—so the value of

the SFP of func must be 0xffffdc58.

C code:

1 void func(){

2 char buf[16];

3 ...

4 }

5

6 void vulnerable(){

7 ...

8 func();

9 }

GDB Output:

(gdb) info frame

...

Saved registers:

ebp at 0xffffdc58,

eip at 0xffffdc5c

Final (Question 2 continues…) Page 2 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued…)

Q2.5 (0.5 points) True or False: Format string vulnerabilities allow an attacker to read data from the

stack, but they cannot be exploited to write to memory or execute shellcode.

True False

Solution: When an attacker controls the format string, they can use the %n identifier to write to

specific memory addresses. By overwriting targets like the RIP, this vulnerability can be exploited

to execute arbitrary shellcode.

Q2.6 (0.5 points) True or False: Bear Systems modifies ASLR: instead of randomly generating the

memory offset when the program starts, they randomly generate the memory offset when the

program is compiled and hardcode this offset into the binary. Compared to standard randomized

ASLR, Bear Systems’ modification improves security against memory safety exploits.

True False

Solution: Hardcoding the offset into the executable ensures it is the same for every user and

every execution. An attacker can simply analyze their own copy of the binary to recover the

offset and successfully exploit any other user, effectively defeating the purpose of ASLR.

Q2.7 (0.5 points) True or False: The HMAC algorithm is specifically designed to be secure against length

extension attacks (where an attacker can compute 𝐻(𝑀 ‖ 𝑀 ′) for some 𝑀 ′ given only 𝐻(𝑀),
the length of 𝑀 , and 𝑀 ′).

True False

Solution: HMAC uses a nested hashing structure involving an inner and outer pad. This design

prevents length extension attacks that affect hashes like SHA256.

Q2.8 (0.5 points) True or False: In AES-CBC mode, encryption cannot be parallelized because the

encryption of block 𝐶𝑖 depends on the ciphertext of the previous block 𝐶𝑖−1, but decryption can be

parallelized.

True False

Solution: CBC decryption uses the formula 𝑃𝑖 = 𝐷𝐾(𝐶𝑖) ⊕ 𝐶𝑖−1. Since all ciphertext blocks 𝐶

are available immediately upon receipt, each plaintext block can be computed independently.

Final (Question 2 continues…) Page 3 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued…)

Q2.9 (0.5 points) True or False: If an attacker intercepts a Diffie-Hellman key exchange where Alice

sends 𝐴 = 𝑔𝑎mod𝑝 and Bob sends 𝐵 = 𝑔𝑏mod𝑝, the attacker can easily compute the shared secret

𝑆 if they can solve the Discrete Logarithm Problem.

True False

Solution: The security of Diffie-Hellman relies on the hardness of the Discrete Logarithm

Problem. If an attacker can solve for 𝑎 given 𝐴 (or 𝑏 given 𝐵), they can compute the shared secret

𝑆 = 𝑔𝑎𝑏mod𝑝.

Q2.10 (0.5 points) True or False: El Gamal encryption is deterministic; if you encrypt the same message

𝑀 twice with the same public key, you will always generate the exact same ciphertext (𝐶1, 𝐶2).

True False

Solution: El Gamal encryption is randomized. It uses a random nonce 𝑟 for every encryption,

resulting in different ciphertexts (𝑔𝑟, 𝑀 ⋅ 𝑔𝑎𝑏) for the same message. This is necessary for IND-

CPA security.

Q2.11 (0.5 points) True or False: The “Same-Origin Policy” allows a script loaded by http://example.

com to read the properties of a document from https://example.com because they share the

same domain name and the protocol doesn’t need to match.

True False

Solution: The Same-Origin Policy defines an origin by the tuple (Protocol, Domain, Port). http

and https are different protocols, so these are treated as different origins.

Q2.12 (0.5 points) True or False: If a website sets a cookie with Domain=.example.com, that cookie will

be sent by the browser in requests to both www.example.com and secure.example.com.

True False

Solution: Cookie domains match parent domains. A cookie set for .example.com is valid for

any subdomain of example.com.

Q2.13 (0.5 points) True or False: In a TCP handshake, if the Initial Sequence Number (ISN) is generated

randomly with a cryptographically secure pseudorandom number generator, this will prevent off-

path attackers from easily injecting packets into the connection by guessing the sequence number.

True False

Solution: Off-path attackers cannot see the traffic and must guess the sequence numbers. Using

random ISNs maximizes the difficulty of this guess (1 in 232).

Final (Question 2 continues…) Page 4 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued…)

Q2.14 (0.5 points) True or False: DNSSEC with NSEC prevents “zone walking” (enumerating all valid

domain names in a zone) by using NSEC records that return a cryptographic hash of the queried

domain name rather than the name itself.

True False

Solution: NSEC records return the next valid domain name in cleartext, enabling zone walking.

NSEC3 makes zone walking harder by hashing domain names, but NSEC does nothing to prevent

zone walking and in fact makes zone walking easy.

Q2.15 (0.5 points) True or False: The BGP (Border Gateway Protocol) includes built-in cryptographic

verification to ensure that an Autonomous System (AS) actually owns the IP prefixes it advertises,

preventing prefix hijacking attacks by default.

True False

Solution: BGP operates largely on trust and does not have built-in cryptographic mechanisms

to verify prefix ownership, making it vulnerable to route hijacking.

Q2.16 (0.5 points) True or False: The Kaminsky DNS attack allows an attacker to poison the DNS cache

of a recursive resolver by flooding it with spoofed responses for non-existent subdomains (e.g.,

1.google.com, 2.google.com), aiming to overwrite the authority records for the target domain

(e.g., google.com).

True False

Solution: The Kaminsky attack bypasses the TTL wait time by querying random non-existent

subdomains. The goal is to get a spoofed response accepted which includes malicious authority

(NS) records for the target zone.

Final Page 5 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q3 Memory Safety: Tomayto 🍅 (8 points)

Consider the following vulnerable C code: Stack at Line 5

RIP of main

SFP of main

(1)

(2)

(3)

(4)

RIP of tomayto

SFP of tomayto

buffer

1 void tomayto(int count, char *input) {

2 char buffer[32];

3 if (count > 32) { return; }

4 memcpy(buffer, input, count);

5 }

6

7 void main() {

8 int user_int = 0;

9 char user_string[40];

10 fread(user_string, 4, 11, stdin);

11 tomayto(user_int, user_str);

12 }

• All memory safety defenses are disabled.

• You run GDB, set a breakpoint at line 4, run and find that buffer starts at address 0x50ffd100.

• You run GDB, set a breakpoint at line 4, run and find that the RIP of tomayto has the value 0x08048999.

• Your goal is to execute the 32-byte long SHELLCODE.

(0.5 points each) What goes in the blanks in the stack diagram above?

Q3.1 Blank (1): A count B user_string C user_int D input

Q3.2 Blank (2): A count B user_string C user_int D input

Q3.3 Blank (3): A count B user_string C user_int D input

Q3.4 Blank (4): A count B user_string C user_int D input

Solution:

Address Content

0x50ffd160 [4] RIP of main

0x50ffd15c [4] SFP of main

0x50ffd158 [4] user_int

0x50ffd130 [40] user_string

0x50ffd12c [4] input

0x50ffd128 [4] count

0x50ffd124 [4] RIP of tomayto

0x50ffd120 [4] SFP of tomayto

0x50ffd100 [32] buffer

Final (Question 3 continues…) Page 6 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 3 continued…)

Q3.5 (1 point) Which of the following memory safety vulnerabilities are present in the above code?

A Format String Vulnerability C Stack Buffer Overflow E Heap Overflow

B Signed/Unsigned D ret2ret F None of the above

Solution: The variable count is a signed integer (int). The check count > 32 effectively checks if

count is positive and greater than 32.

However, memcpy takes a size_t for the length, which is unsigned. If we pass a negative number

(e.g., -1), the check -1 > 32 is False, so we proceed.

Then, memcpy interprets -1 as 0xFFFFFFFF (a huge unsigned number), causing a massive copy that

overflows buffer.

Q3.6 (4 points) Provide an input to fread on Line 10 that would cause the program to execute shellcode.

If a part of the input can be any non-zero value, use 'A' * n to represent n bytes of garbage.

Don’t worry about segfaults that could possibly occur during the memcpy (all memory is mapped

in). If you weren’t worried about that, please ignore this remark.

 SHELLCODE + 'A'*4 + '\x00\xd1\xff\x50' +

'\x00\x00\x00\x80'

Solution: We use the first 40 bytes to change the value of user_string to:

1. SHELLCODE to fill up buffer

2. 4 bytes of garbage for the SFP of tomayto

3. The address of buffer to overwrite the RIP of tomayto

Next, we use the final 4 bytes of the fread call to overwrite the value of user_int to a negative value

so that we can pass the size check on line 4, until it is cast as a large unsigned integer to memcpy on

line 7. We’ll accept any negative number here.

You could also use \x30\xd1\xff\x50 (the address of user_input) instead of \x00\xd1\xff\x50

(the address of buffer), as after the memcpy both will contain a copy of SHELLCODE.

Q3.7 (1 point) Which changes need to be made to make this code memory-safe?

A Line 1: Change int count to size_t count;

B Line 3: Change count > 32 to count >= 32

C Line 4: Add input[31] = '\0'; before the memcpy on line 5

D Line 8: Change int user_int = 0; to int user_int = -1;

Final (Question 3 continues…) Page 7 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 3 continued…)

Solution: Changing count to an unsigned type (size_t or unsigned int) ensures that the check

if (count > 32) correctly handles large numbers. If the attacker passes a “negative” bit pattern

(e.g., 0xFFFFFFFF), the comparison count > 32 will interpret both values as unsigned integers, see

0xFFFFFFFF as a huge number, it will be greater than 32, and the function will return safely.

If count is exactly 32, then it’s fine to pass 32 to memcpy; it will not write past the end of buffer.

memcpy is not interrupted by null bytes. There is no need for the data to be null-terminated.

Final (Question 11 continues…) Page 8 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q4 Memory Safety: I’ve played these games before… 🍅 (8 points)

Consider the following vulnerable C code:
Stack at Line 6

RIP of main

SFP of main

(1)

RIP of tomahto

(2)

(3)

(4)

1 void tomahto() {

2 char cage[12];

3 fgets(cage, 12, stdin);

4 printf(cage);

5 gets(cage);

6 }

7

8 void main() {

9 tomahto();

10 }

• Stack canaries are enabled. All other memory safety mitigations are disabled.

• You run GDB, set a breakpoint at line 5, run and find that cage starts at address 0xffffd100 and that

there is a copy of SHELLCODE at address 0xffffd204.

• Through trial and error, you discover that the stack canary for tomahto is the 4th value printf reads

from the stack when it looks for arguments (i.e., it is offset 4 words away from the stack pointer printf

uses).

(0.25 points each) What goes in the blanks in the stack diagram above?

Q4.1 Blank (1): A cage B SFP of tomahto C canary of tomahto D canary of main

Q4.2 Blank (2): A cage B SFP of tomahto C canary of tomahto D canary of main

Q4.3 Blank (3): A cage B SFP of tomahto C canary of tomahto D canary of main

Q4.4 Blank (4): A cage B SFP of tomahto C canary of tomahto D canary of main

Solution: The stack diagram:

0xffffd120 [4] RIP of main

0xffffd11c [4] SFP of main

0xffffd118 [4] canary of main

0xffffd114 [4] RIP of tomahto

0xffffd110 [4] SFP of tomahto

0xffffd10c [4] canary of tomahto

0xffffd100 [12] cage

The canary is always placed between the local buffers and the SFP to detect overflows before they

corrupt the return address.

Q4.5 (1 point) Which of the following memory safety vulnerabilities are present in the above code?

A Format String Vulnerability C Stack Buffer Overflow E Heap Overflow

B Signed/Unsigned D ret2ret F None of the above

Final (Question 4 continues…) Page 9 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 4 continued…)

Solution: Line 4 (printf(cage)): The user controls the first argument to printf. This is a Format

String vulnerability that allows reading from the stack (leaking data).

Line 5 (gets(cage)): This allows us to write as many bytes into cage as we’d like, which is only 12

bytes long. This allows overwriting the stack (Buffer Overflow).

Q4.6 (2 points) Which of these inputs to fgets on Line 3 will always leak the value of the stack canary

in the tomahto stack frame? Select all that apply.

Note: Stack canaries are four random bytes and do not contain a null byte.

A '%x' * 4 C ('%c' * 3) + '%x' E '%n' * 4

B '%x' * 3 D '%x' + ('%s' * 3) F None of the above

Solution: We need printf to look up the stack to find the canary of tomahto. From our stack diagram,

we know that printf will start looking for arguments at address 0xffffd100, and the canary of

tomahto is the 4th word on the stack relative to printf’s arguments.

1. '%x' * 4: This prints the first 4 values on the stack in hex (the 12 bytes of cage, and the canary).

The 4th value printed is the canary.

2. ('%c' * 3) + '%x': The three %c specifiers consume the first 3 arguments on the stack (the

12 bytes of cage), printing them as characters. The following %x consumes the 4th argument (the

canary), printing the canary in pointer format (hex).

Incorrect options: %n would attempt to write to the memory address, modifying the canary instead of

leaking it. %s would attempt to treat the canary value as an address and dereference it, likely crashing

the program, but in any case not printing the value of the canary. '%x' + ('%s' * 3) treats the 4th

argument—the canary—as an address (%s) and tries to print memory starting at that address; but the

canary is not an address and printing memory at that address probably won’t help deduce the value

of the canary itself.

In the next part, provide an input to gets on line 5 that would cause the program to execute SHELLCODE,

assuming the correct input has been provided to fgets on line 3. You may use CANARY to refer to the

correct 4-byte string value of the stack canary, as leaked by printf.

If a part of the input can be any non-zero value, use 'A' * n to represent n bytes of garbage.

Q4.7 (4 points) Input to gets on line 5:

'A' * 12 + CANARY + 'B' * 4 + '\x04\xd2\xff\xff'

Solution: We are performing a stack buffer overflow. The memory layout is:

[12 bytes cage] + [4 bytes Canary] + [4 bytes SFP] + [4 bytes RIP]

1. Fill the buffer: We write 12 bytes of garbage ('A' * 12) to fill cage.

2. Restore the canary: We must overwrite the canary location with its original value (CANARY) so that

the function tomahto does not crash when it checks the canary before returning.

3. Overwrite SFP: We write 4 bytes of garbage ('B' * 4) to write over the SFP of tomahto.

4. Overwrite RIP: We write the address of our SHELLCODE (0xffffd204) to replace the RIP.

Final Page 10 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q5 Cryptography: Secret Santa 🎅 (9 points)

Annabella and Fred want to establish a secure communication channel. They require a protocol that

supports asynchronous communication (Annabella can send a message even if Fred is offline, i.e., even if

Fred is not connected to the Internet at that moment), mutual authentication, and forward secrecy.

Q5.1 (2 points) Why is a basic, unauthenticated Diffie-Hellman exchange vulnerable to Man-in-the-

Middle (MITM) attacks?

A The discrete logarithm problem is easier to solve when values are intercepted.

B Diffie-Hellman keys are too short to resist brute-force attacks.

C The public keys exchanged are not cryptographically bound to the users’ identities.

D Servers cannot store Diffie-Hellman public values.

Solution: In basic DH (𝑔𝑎, 𝑔𝑓), the values are just random integers. Annabella has no way

of verifying that the value 𝑔𝑓 actually came from Fred; an attacker (Mallory) can intercept

Annabella’s 𝑔𝑎, send her own 𝑔𝑚, and establish a key with Annabella while pretending to be Fred.

Q5.2 (1 point) Annabella and Fred decide to simply publish static (long-term) Diffie-Hellman (DH) public

keys to a single, central, trusted server. They use these same keys to derive a shared secret for every

message they ever send.

Why does this approach fail to provide forward secrecy?

A Static DH outputs are deterministic and therefore predictable by random guessing.

B The server must regenerate the group parameters for each session.

C If a long-term private key is stolen later, the attacker can decrypt all past recorded traffic.

D Public keys expire too quickly to be useful.

Solution: Forward Secrecy means that if long-term keys are leaked or revealed to the attacker,

this does not compromise past session keys. If 𝑔𝑎 and 𝑔𝑓 are static (fixed forever), the shared

secret 𝑔𝑎𝑓 is always the same. If an attacker records the ciphertext and steals 𝑎 years later, they

can compute 𝑔𝑎𝑓 from 𝑔𝑓 (which was sent unencrypted over the network and could have been

recorded by the attacker) and 𝑎 (which the attacker now knows) and decrypt everything.

The Protocol
To solve these issues, Annabella and Fred adopt a new scheme:

1. Fred uploads keys: Fred generates the follow

ing and uploads the public parts to a central

trusted server:

• Identity Key (IK𝐹): Long-term static key pair.

• Signed Pre-Key (SPK𝐹): A medium-term key

pair signed by IK𝐹 .

• One-Time Pre-Keys (OPK𝐹 [𝑖]): A batch of key

pairs intended to be used once and deleted. Not

signed.

2. Annabella fetches keys: If Annabella wants

to message Fred, she fetches Fred’s IK𝐹 , SPK𝐹 ,

and a single OPK𝐹 [𝑖] from the server; verifies the

Final (Question 5 continues…) Page 11 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 5 continued…)

signature, and generates a fresh Ephemeral Key

pair (EK𝐴).

3. Key derivation: Annabella computes the

shared secret SK by combining four Diffie-Hell

man (DH) calculations:

1. 𝐾1 = DH(IK𝐴, SPK𝐹)
(Binds Annabella’s Identity to Fred’s Signed Key)

2. 𝐾2 = DH(EK𝐴, IK𝐹)
(Binds Session to Fred’s Identity)

3. 𝐾3 = DH(EK𝐴, SPK𝐹)
(Binds Session to Fred’s Signed Key)

4. 𝐾4 = DH(EK𝐴, OPK𝐹 [𝑖])
(Provides Strong Forward Secrecy)

SK = 𝖧(𝐾1 ‖ 𝐾2 ‖ 𝐾3 ‖ 𝐾4)
Q5.3 (2 points) The calculation includes the term DH(IK𝐴, SPK𝐹). Why does this term specifically

provide assurance to Annabella that the recipient is actually Fred?

A Because Annabella verified the signature on SPK𝐹 , she knows only the holder of Fred’s

private Identity Key could have authorized it.

B Because Annabella’s Identity Key (IK𝐴) is included, Fred automatically knows who sent the

message.

C Because DH values are universally unique, no one else could generate this specific integer.

D Because the server performs a Zero-Knowledge Proof to validate the Pre-Key before storage.

Solution: The SPK𝐹 is signed by Fred’s long-term identity key IK𝐹 . When Annabella verifies

this signature, she knows SPK𝐹 belongs to Fred. Therefore, any resulting shared secret derived

from SPK𝐹 can only be computed by the person holding the private key for SPK𝐹 (which

is Fred).

Q5.4 (1 point) Which architectural feature specifically enables asynchronous communication (Annabella

sending a message while Fred is offline)?

A The use of symmetric Key Derivation Functions (KDF).

B The requirement for Annabella to sign her own messages.

C The inclusion of One-Time Pre-Keys for forward secrecy.

D The use of a server to store Fred’s pre-published public keys.

Solution: Asynchrony requires that Annabella can generate a full shared secret without an

interactive handshake with Fred. By fetching pre-published keys (IK, SPK,OPK) from the

server, she can complete the DH math alone.

Final (Question 5 continues…) Page 12 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 5 continued…)

Q5.5 (1 point) Why couldn’t Annabella and Fred just use a standard, ephemeral Diffie-Hellman hand

shake to achieve asynchronous messaging?

A Fred’s computer cannot generate DH keys when it is not connected to the Internet.

B Ephemeral DH requires both parties to be online simultaneously to exchange values.

C Servers are technically incapable of storing DH integers.

D Standard DH is too computationally expensive for mobile devices.

Solution: Standard ephemeral DH is interactive: Annabella sends 𝑔𝑎, Fred receives it and sends

𝑔𝑓 . If Fred is offline, he cannot receive 𝑔𝑎 nor generate/send 𝑔𝑓 , preventing the handshake from

completing.

Q5.6 (1 point) Consider a simplified protocol that only computes SK = DH(EK𝐴, IK𝐹).

Which security properties are missing from this specific exchange? Select all that apply.

A Confidentiality against passive eavesdroppers. D Forward Secrecy.

B Authentication of Annabella (to Fred). E None of the above

C Authentication of Fred (to Annabella).

Solution:

1. Forward Secrecy is missing: IK𝐹 is static. If stolen, past messages can be decrypted.

2. Authentication of Annabella is missing: EK𝐴 is random and anonymous. Fred knows some

one sent a message, but not who. Anyone could have chosen their own EK, computed a SK,

encrypted their message, and claimed to be Annabella.

3. Authentication of Fred is present: Annabella uses IK𝐹 , so she knows she is encrypting for

Fred, and only Fred will be able to compute SK and decrypt.

4. Confidentiality is present: A passive observer sees only public keys and cannot compute the

secret, thanks to the use of Diffie-Hellman.

Final (Question 5 continues…) Page 13 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 5 continued…)

Q5.7 (1 point) Fred modifies the scheme to publish only an identity key IK𝐹 and a batch of one-time

pre-keys OPK𝐹 , but not SPK𝐹 (no signed pre-key is published). The secret key is computed as

SK = 𝖧(𝐾2 ‖ 𝐾4).

Select all the security guarantees/properties this modified scheme provides.

A Authentication of Annabella (Fred can verify he is speaking with Annabella)

B Authentication of Fred (Annabella can verify she is speaking with Fred)

C Forward secrecy (as long as unused one-time pre-keys remain)

D Asynchronous communication (only while unused one-time pre-keys remain)

E None of the above

Solution: As long as unused OPK𝐹 from Fred remain, the protocol provides forward secrecy

and asynchronous communication.

Fred’s identity key IK𝐹 is still used to sign his public one-time pre-keys OPK𝐹 , so Annabella

knows she is deriving a key with Fred and not an attacker.

SK does not depend on Annabella’s private key from IK𝐴. Annabella does not have to prove her

identity by using some secret only she knows; the computation of SK could be done by anyone.

So there is no guarantee that Fred is talking to Annabella, as opposed to an imposter falsely

claiming to be Annabella.

Because both Annabella’s ephemeral key and Fred’s one-time pre-key are deleted after use, past

session keys remain secure even if long-term keys are compromised, providing forward secrecy.

An attacker who steals the private keys corresponding to IK𝐹 or IK𝐴 is still not able to compute

SK for past communications.

However, each asynchronous session consumes a one-time pre-key. Once Fred runs out of these

keys, Annabella has no authenticated public key left to start a session while Fred is offline, which

is why the signed pre-key exists in the original protocol. Therefore, asynchronous communica

tion is only guaranteed while there exists unused OPKs.

Final Page 14 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q6 Cryptography: Double Dipping 🍯 (7 points)

Recall the implementation of 𝖠𝖤𝖲-𝖢𝖡𝖢 encryption:

𝑃1

𝐼𝑉 ⨁

AES Encryption𝐾

𝐶1

𝑃2

⨁

AES Encryption𝐾

𝐶2

…

𝑃𝑛

⨁

AES Encryption

𝐶𝑛

𝐾

• Alice uses 𝖠𝖤𝖲-𝖢𝖡𝖢 encryption to encrypt the plaintext 𝑃 = 𝑃1 ‖ 𝑃2 ‖ 𝑃3. She sends the correspond

ing ciphertext 𝐶 = 𝐶1 ‖ 𝐶2 ‖ 𝐶3 to Bob.

• Alice and Bob use a key 𝐾1.

Q6.1 (2 points) Under 𝖠𝖤𝖲-𝖢𝖡𝖢, which of the following are the correct value for 𝐶3? Select all that apply.

A 𝐶3 = 𝐸𝐾1
(𝐶2) D 𝐶3 = 𝐸𝐾1

(𝑃1 ⊕ 𝑃2 ⊕ 𝑃3 ⊕ 𝐼𝑉)

B 𝐶3 = 𝐸𝐾1
(𝐶2 ⊕ 𝑃3) E 𝐶3 = 𝐸𝐾1

(𝑃1 ⊕ 𝑃2 ⊕ 𝑃3)

C 𝐶3 = 𝐸𝐾1
(𝑃3 ⊕𝐸𝐾1

(𝑃2 ⊕𝐸𝐾1
(𝑃1 ⊕ 𝐼𝑉)) F 𝐶3 = 𝐸𝐾1

(𝐶2 ⊕ 𝑃3) ⊕ 𝐼𝑉

Solution: 𝐶𝑖 = 𝐸𝐾1
(𝐶𝑖−1 ⊕ 𝑃𝑖), so option B is correct. Also, since 𝐶3 = 𝐸𝐾1

(𝐶2 ⊕ 𝑃3) and

𝐶2 = 𝐸𝐾1
(𝐶1 ⊕ 𝑃2), we obtain 𝐶3 = 𝐸𝐾1

(𝑃3 ⊕𝐸𝐾1
(𝐶1 ⊕ 𝑃2)), and then plugging in 𝐶1 =

𝐸𝐾1
(𝑃1 ⊕ 𝐼𝑉), we obtain option C.

Q6.2 (1.5 points) Mallory wants to manipulate the message. She flips the first bit of the 𝐼𝑉 . She leaves

all ciphertext blocks (𝐶1, 𝐶2, 𝐶3) unchanged.

What happens to the decrypted plaintext 𝑃 ′?

A The first bit of 𝑃 ′
1 is flipped; all other blocks are correct.

B The whole block 𝑃 ′
1 is garbled (randomized); all other blocks are correct.

C The first bit of 𝑃 ′
1 is flipped, and 𝑃 ′

2 is completely garbled.

D The decryption fails completely due to padding errors.

Solution: In CBC decryption for the first block, 𝑃1 = 𝐷𝐾1
(𝐶1) ⊕ 𝐼𝑉 . If we flip a bit in the 𝐼𝑉 ,

that error propagates directly through the XOR into 𝑃1 at the exact same position. Since 𝐼𝑉 is

not used for 𝑃2 or 𝑃3, the rest of the message is intact.

Final (Question 6 continues…) Page 15 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 6 continued…)

Q6.3 (1.5 points) Alternatively, suppose Mallory flips the last bit of ciphertext block 𝐶1. She leaves

𝐼𝑉 , 𝐶2, 𝐶3 unchanged.

What is the specific effect on the decrypted plaintext blocks 𝑃 ′
1 and 𝑃 ′

2 ?

A Both 𝑃 ′
1 and 𝑃 ′

2 have their last bits flipped.

B 𝑃 ′
1 has its last bit flipped; 𝑃 ′

2 is completely garbled.

C 𝑃 ′
1 is completely garbled; 𝑃 ′

2 has its last bit flipped.

D 𝑃 ′
1 is completely garbled; 𝑃 ′

2 is unaffected.

Solution:

1. Effect on 𝑃1: Bob computes 𝑃1 = 𝐷𝐾1
(𝐶1) ⊕ 𝐼𝑉 . Since 𝐶1 goes into the AES decryption

function, changing even one bit randomizes the output entirely (Avalanche Effect). 𝑃1 is

garbage.

2. Effect on 𝑃2: Bob computes 𝑃2 = 𝐷𝐾1
(𝐶2) ⊕ 𝐶1. Here, 𝐶1 is just XORed against the result.

Therefore, the specific bit flip in 𝐶1 carries over directly to flip the same bit in 𝑃2.

Final (Question 6 continues…) Page 16 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 6 continued…)

Consider the 𝖢𝖡𝖢-𝖬𝖠𝖢 scheme, which takes an input message 𝑀 = (𝑀1,𝑀2,…,𝑀𝑛) and key 𝐾 , and

outputs a tag 𝑡. The same key is used for all 𝖢𝖡𝖢-𝖬𝖠𝖢 computations in this question.

𝑀1

AES Encryption𝐾

𝐶1

𝑀2

⨁

AES Encryption𝐾

𝐶2

…

𝑀𝑛

⨁

AES Encryption

𝑡

𝐾

Suppose for the next two subparts:

• Recall that Alice encrypted 𝑃 with 𝐾1 and sent it to Bob. Bob will also decrypt with 𝐾1.

• Assume that Alice used 𝐼𝑉 = 0 when encrypting 𝑃 .

• Before Bob can decrypt, Mallory (an on-path attacker) tampers with the first 2 ciphertext blocks so that

Bob receives 𝐶′ = 𝐶′
1 ‖ 𝐶′

2 ‖ 𝐶3. Note that 𝐶3 and 𝐼𝑉 remain unchanged.

• Alice also computes a 𝖢𝖡𝖢-𝖬𝖠𝖢 tag 𝑡 on the plaintext 𝑃 , using key 𝐾2, and sends it to Bob.

• Bob decides to compute the 𝖢𝖡𝖢-𝖬𝖠𝖢 tag 𝑡′ on his tampered 𝑃 ′ (the decryption of the tampered 𝐶′)

to verify the integrity of the plaintext.

• Alice and Bob use 𝐾2 as the key for 𝖢𝖡𝖢-𝖬𝖠𝖢, and 𝐾1 for 𝖠𝖤𝖲-𝖢𝖡𝖢 encryption.

Q6.4 (1 point) Bob decrypts 𝐶′ to get 𝑃 ′. Which blocks of 𝑃 ′ will be guaranteed to be the same as the

corresponding blocks from 𝑃 ? Select all that apply.

A 𝑃 ′
1 C 𝑃 ′

3

B 𝑃 ′
2 D None of the above

Solution: 𝑃1 and 𝑃2 are different because they were tampered by Eve. Although 𝐶3 is left

untampered, the previous block has been altered (𝐶′
2 ≠ 𝐶2). Because CBC decryption requires

XORing with the previous ciphertext block to recover the plaintext (𝑃 ′
3 = 𝐶′

2 ⊕𝐸−1
𝐾 (𝐶3)), this

change to 𝐶′
2 results in a corrupted plaintext 𝑃 ′

3 .

Final (Question 6 continues…) Page 17 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 6 continued…)

Q6.5 (1 point) Is it possible for 𝑡′ = 𝑡 (i.e., the MAC remains valid despite the tampering)?

A Yes, if 𝐾1 = 𝐾2.

B No, because 𝐶′
2 has been tampered with.

C No, because the plaintext 𝑃 ′ is different from 𝑃 .

D No, because the attacker does not know the key 𝐾2.

Solution: If 𝐾1 = 𝐾2, the MAC calculation on the decrypted plaintext 𝑃 ′ is mathematically

identical to re-encrypting 𝑃 ′ via CBC mode with 𝐼𝑉 = 0 and keeping the last block.

1. MAC Input: The MAC calculation for the final block (using 𝑃 ′
3) uses the previous ciphertext

block 𝐶′
2 as its input state. The input to the final 𝐸𝐾 function is 𝑃 ′

3 ⊕𝐶′
2 .

2. Decryption Formula: Bob decrypted the final block 𝐶3 using:

𝑃 ′
3 = 𝐷𝐾(𝐶3) ⊕𝐶′

2

3. Substitution and Cancellation: When Bob calculates the final MAC tag 𝑡′, he substitutes the

decryption result into the MAC formula:

𝑡′ = 𝐸𝐾(𝑃 ′
3 ⊕𝐶′

2)

𝑡′ = 𝐸𝐾((𝐷𝐾(𝐶3) ⊕𝐶′
2) ⊕ 𝐶′

2)

The 𝐶′
2 terms cancel out because 𝐴⊕𝐴 = 0:

𝑡′ = 𝐸𝐾(𝐷𝐾(𝐶3))

𝑡′ = 𝐶3

Since the original tag 𝑡 = 𝐸𝑘1
(𝑀3 ⊕𝐶2) = 𝐶3, if 𝐾1 = 𝐾2, then 𝑡′ = 𝑡 and the forgery

succeeds.

Final Page 18 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q7 Networking: The Fate of Streamify 🎶 (9 points)

Nazar is live-streaming video to Zoir over Streamify, their new streaming service. To send the video,

Nazar’s computer sends UDP packets to Zoir’s computer.

Suppose there are no security provisions: Zoir’s computer accepts the UDP packet if and only if it has

the correct UDP destination port. In UDP, port numbers are 16 bits.

Q7.1 (2 points) What is the probability that a single spoofed UDP packet from an off-path attacker is

accepted, if it uses the correct destination IP address and if the destination port is chosen randomly?

A 1 B 1/28 C 1/216 D 1/224 E 1/232 F 0

Solution: The 16-bit UDP port must be guessed correctly.

Q7.2 (2 points) Now suppose an on-path attacker observes a few packets sent by Nazar, and then wants

to send a new spoofed packet to Zoir. What is the best probability that the on-path attacker can

have their spoofed UDP packet be accepted by Zoir?

A 1 B 1/28 C 1/216 D 1/224 E 1/232 F 0

Solution: An on-path attacker can observe the UDP destination port number in packets from

Nazar to Zoir, then copy that port number into the spoofed packet. No guessing is needed.

Nazar and Zoir want stronger security, so they add a 16-bit integrity tag to each packet:

𝑡 = 𝖲𝖧𝖠𝟤𝟧𝟨-𝖧𝖬𝖠𝖢(𝐾, packet), where packet is the rest of the packet, and 𝐾 is an 8-bit secret key

shared securely between Nazar and Zoir. A packet is accepted if and only if has both a correct 16-bit

destination port and correct 16-bit integrity tag 𝑡.

Q7.3 (2 points) An off-path attacker wants to send a spoofed packet to Zoir. What is the best probability

that the off-path attacker can have their spoofed UDP packet be accepted by Zoir, in this new design?

Assume the attacker doesn’t know the UDP port and has to guess it randomly.

A 1 B 1/28 C 1/216 D 1/224 E 1/232 F 0

Solution: The attacker can guess a random 16-bit UDP port number and guess a random 8-

bit key, put that destination port number in their spoofed packet, use the key to compute the

integrity tag, and put the integrity tag in their spoofed packet. If both guesses were correct, their

packet will be accepted. There is a 1/216 chance the UDP port is guessed correctly and a 1/28

chance the key is guessed correctly, so the total probability is 1/224.

This is better than guessing the 16-bit port number and 16-bit integrity tag, as that would have

a success probability of 1/232.

Final (Question 7 continues…) Page 19 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 7 continued…)

Q7.4 (3 points) Now suppose an on-path attacker observes a few packets sent by Nazar, and then wants

to send a new spoofed packet to Zoir. What is the best probability that the on-path attacker can

have their spoofed UDP packet be accepted by Zoir, in this new design? Assume the attacker can

do any reasonable amount of computation before constructing the spoofed packet.

A 1 B 1/28 C 1/216 D 1/224 E 1/232 F 0

Solution: The attacker can try all 28 possibilities for K, and check which is compatible with the

observed packets from Nazar (i.e., which possibility for K yields the correct tag for all of those

packets). That will almost surely be the correct K. Then the attacker can use the correct K to

compute an integrity tag for the spoofed packet to Zoir. So, with a little computation, the attacker

can infer K, and their spoofed packet will be accepted with near-certainty.

Final Page 20 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q8 Web Security: Super Query League ⚽ (16 points)

EvanBot has created a fantasy football app called FantasyLeague. Each user is able to name their team,

draft players, and manage lineups. The app relies on the following SQL tables:

Team

team_name string

draft_order uint32_t

completed boolean

Player

team_name string

player_name string

in_lineup boolean

Account

username string

password string

team_name string

When users create an account, they select a team_name that is used to represent their team. In each round

of drafting, the draft_order determines the order in which teams get to select players. Once a team

has run out of people to draft, completed is set to true and they can start playing. Each week, they set

the in_lineup variable for some of the players on their team, and score based on the people who are in

their lineup.

Final (Question 8 continues…) Page 21 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 8 continued…)

Q8.1 (3 points) To search for players, the app executes the following query:

 SELECT player_name, team_name FROM Player WHERE player_name = '$search';

Which of the following payloads, when injected into the $search parameter, will allow the attacker

to learn the username and password of every user in the Account table, if the attacker can see the

results of the query?

Select all that apply.

A ' OR 1=1; --

B ' UNION SELECT username, password FROM Account --

C ' UNION SELECT username, password, team_name FROM Account --

D ' UNION SELECT password, username FROM Account --

E ' UNION SELECT * FROM Account --

F ' UNION SELECT player_name, team_name FROM Player --

Solution: The goal of this question is to extract data from a different table (Account) than the

one the query was originally designed for (Player). To do this, we use the UNION operator. The

UNION operator allows you to combine the results of two different SELECT statements into a

single result set.

The injected SELECT statement must have the exact same number of columns as the original

SELECT statement.

Now, turning to the options

• ' OR 1=1; -- Incorrect. This is a tautology attack. It returns all rows from the Player table,

but it fails to retrieve data from the Account table.

• ' UNION SELECT username, password FROM Account -- Correct. This selects exactly 2

columns (username, password). Since 2 matches the original query’s 2, the database accepts it.

• ' UNION SELECT username, password, team_name FROM Account -- Incorrect. This

explicitly selects 3 columns, causing a syntax error because the column count does not match

the original query.

• ' UNION SELECT password, username FROM Account -- Correct. This also selects

exactly 2 columns. The database accepts it regardless of the logical order of data (it simply puts

the password in the first slot and username in the second).

• ' UNION SELECT * FROM Account -- Incorrect. This selects all 3 columns from Account.

Since 3 does not equal 2, this causes a syntax error.

• ' UNION SELECT player_name, team_name FROM Player -- Incorrect. This returns

data from the Account table, but it doesn’t reveal the username or password, so it doesn’t meet

the requirements of the question.

Final (Question 8 continues…) Page 22 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 8 continued…)

Q8.2 (3 points) Jonah’s jealousy knows no bounds. He decides to ban his rival, Fred, from the platform

entirely. To login, the app executes the following query:

SELECT * FROM Account WHERE username = '$username';

When injected into the $username parameter of the login query, which of the following payloads

will delete the row Fred from the Account table, and only delete that row?

Select all that apply.

Note: DELETE FROM table WHERE condition removes rows from table that satisfy condition.

A '; DELETE FROM Account WHERE username = 'Fred';

B '; DELETE FROM Account WHERE username = 'Fred'; --

C '; DELETE FROM Account WHERE username = 'Fred' AND '1' = '1

D '; DELETE FROM Account WHERE username = 'Fred' AND '1' = '1';

E '; DELETE FROM Account WHERE username = 'Fred' AND '1' = '1'; --

F '; DELETE FROM Player WHERE player_name = 'Fred';

G '; DELETE FROM Player WHERE player_name = 'Fred'; --

Solution: The goal is to remove a specific user from the Account table. Like the previous

question, this requires a Stacked Query injection using a semicolon (;) to execute a second

command after the initial login query. To be correct, the payload must:

1. Close the original string (').

2. End the statement (;).

3. Execute a DELETE on the correct table (Account).

4. Comment out the rest of the query (-- or #).

Now, turning to the options:

• '; DELETE FROM Account WHERE username = 'Fred'; Incorrect. The resulting query

will end with a mismatched single-quote, which will cause a syntax error.

• '; DELETE FROM Account WHERE username = 'Fred'; -- Correct. Standard stacked

query syntax targeting the correct table.

• '; DELETE FROM Account WHERE username = 'Fred' AND '1' = '1 Correct. A '; will

be appended to the end from the original query, so the last quote will be closed and all quotes

will match, and the condition '1' = '1' will be a tautology.

• '; DELETE FROM Account WHERE username = 'Fred' AND '1' = '1'; Incorrect. The

original query will append ';, yielding mismatched quotes.

• '; DELETE FROM Account WHERE username = 'Fred' AND '1' = '1'; -- Correct.

The -- ensures that the quote appended after this is ignored.

• '; DELETE FROM Player WHERE player_name = 'Fred'; Incorrect. This will cause

a syntax error after '; is appended, yielding a mismatched quote. Also, it deletes from the

wrong table.

• '; DELETE FROM Player WHERE player_name = 'Fred'; -- Incorrect. This deletes data

from the Player table. The question specifically asked to delete the row from the Account

table.

Final (Question 8 continues…) Page 23 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 8 continued…)

Q8.3 (2 points) The login page has a “Check Username” feature to see if a user exists. It is vulnerable to

SQL injection but does not display any database content. It simply prints “User Found” if the query

returns any rows, and “User Not Found” otherwise.

SELECT * FROM Account WHERE username = '$user';

You suspect the admin user has a password starting with the letter ‘s’. Which payload(s) will let

you infer whether your suspicion is correct, based on whether the program prints “User Found” or

not in response to your payload?

Select all that apply.

Note: substring(str, start, length) extracts length characters from str beginning at

index start.

A admin' --

B admin' OR '1'='1' --

C admin' AND substring(password, 1, 1) = 's' --

D admin' AND '0'='1' UNION SELECT * FROM Account WHERE substring(password,

1, 1) = 's' --

Solution: The goal is to leak data by making the “User Found” message appear conditionally.

We need a query that returns a row only if our guess is correct.

• admin' -- Incorrect. Always finds the admin user. The program prints “User Found”

regardless of the password.

• admin' OR '1'='1' -- Incorrect. Always finds the admin user. The program prints “User

Found” regardless of the password.

• admin' AND substring(password, 1, 1) = 's' -- Correct. The program will print

“User Found” if and only if admin’s password starts with ‘s’.

‣ If password starts with ‘s’, the expression evaluates to True AND True for the admin user,

so the SQL query returns one row for the admin user, so the program prints “User Found”.

‣ If password does not start with ‘s’, the expression evaluates to True AND False for the

admin user, so the SQL query nothing, so the program prints “User Not Found”.

• ... UNION SELECT ... Incorrect. The UNION finds all users whose password starts with ‘s’.

The program prints “User Found” if any user has a password starting with ‘s’ (regardless of

whether it is the admin user or not), or “User Not Found” if no user has a password starting

with ‘s’, so this does not let you infer whether admin’s password starts with ‘s’. Most likely, if

there are many users, at least one of them will have a password starting with ‘s’, so most likely

the program will print “User Found” no matter what the admin’s password might be.

Final (Question 8 continues…) Page 24 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 8 continued…)

Q8.4 (3 points) You can ask the app to release a player from their team. The app will execute the following

SQL command.

DELETE FROM Player

 WHERE player_name = '$player'

 AND team_name = '$my_team';

You are logged in as guest and your team name is GuestTeam. Assume $my_team is set to

GuestTeam and cannot be modified. You control $player but not $my_team.

Provide a SQL payload for the $player input that will delete every player belonging to the rival

team Winners, without deleting players from other teams.

Solution: Scrub' and '0'='1'; DELETE FROM Player WHERE team_name = 'Winners';

--

Solution: The goal is to execute an arbitrary DELETE command against a specific target

(Winners), bypassing the team name restriction enforced by the application.

Modifying the existing query is a little tricky because the application appends AND team_name

= 'GuestTeam' to the end.

The cleanest solution is a Stacked Query injection:

1. Finish the first query: Scrub' AND '0'='1' closes the string, and ; terminates the statement.

This lets us start a new SQL command, without deleting any players from other teams. It

would also work to provide a player name that is unlikely to appear in any team.

2. Start a new query: DELETE FROM Player WHERE team_name = 'Winners'; is a completely

new command. Since we are starting fresh, we are not bound by the AND team_name =

'GuestTeam' constraint of the previous query.

3. Cleanup: -- comments out the dangling AND team_name = 'GuestTeam' that the appli

cation appends, preventing a syntax error.

Q8.5 (3 points) On signup, the application executes the following SQL query as a prepared statement.

The user-provided inputs user and team are bound securely to the ? placeholders:

 INSERT INTO Account (username, password, team_name)

 VALUES (?, 'dummy_pass', ?);

Later, when a user views their team page, the app executes the following SQL query (notice how

there is no prepared statement here):

SELECT * FROM Team WHERE team_name = '$my_team';

Assume $my_team is retrieved securely from the Account table and matches the team provided

at signup.

Provide a stored-injection payload for the team parameter during signup that will drop the entire

Team table when the user visits their team page later.

Solution: x'; DROP TABLE Team; --

Final (Question 8 continues…) Page 25 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 8 continued…)

Solution: A suitable payload for $team is:

x'; DROP TABLE Team; --

1. At signup, this entire string is stored as the team_name for the new account, and stored in the

Account table. Since the INSERT is done using a prepared statement, no injection happens yet.

2. Later, the team page builds a query by concatenating the team name provided earlier:

SELECT * FROM Team WHERE team_name = '$my_team';

3. With our payload in $my_team, the resulting SQL is: SELECT * FROM Team WHERE team_name

= 'x'; DROP TABLE Team; --';

4. The first statement just selects rows with team_name = 'x'. The second statement DROP TABLE

Team; executes and deletes the entire Team table.

5. The -- comments out the trailing ‘ from the original query so there is no syntax error.

The key idea: the malicious string is stored during signup and only turns into executable SQL when

the app later injects it into a new query.

Q8.6 (2 points) In 10 words or fewer, describe one other serious security flaw with the signup design in

the prior part. Do not mention SQL injection; find some other flaw.

There is a default password / Security through obscurity

Solution: In particular, the prepared statement creates an account with the user-supplied user

name and team name, and uses dummy_pass as the initial password. Hopefully, the application

later updates the password to whatever password the user selected. However, this provides a

brief time window when the account exists with the password dummy_pass. During that time,

anyone in the world could log into the user’s account, using the password dummy_pass.

Final Page 26 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q9 Network Security: Caffè Strada ☕ (11 points)

Consider a local area network (LAN) at a coffee shop.

• Alice is a legitimate user trying to connect to the internet and communicate with Bob.

• Mallory is a malicious attacker on the same LAN.

• The network uses standard ARP for address resolution and DHCP for configuration.

Q9.1 (1 point) Mallory is on the same local network as Alice. She wants to intercept Alice’s traffic destined

for the Internet by providing false information about the Gateway Router.

If Mallory uses ARP spoofing, what information must she substitute in her malicious replies?

A Substitute the IP address normally provided by the gateway with Mallory’s IP address

B Substitute the MAC address normally provided by the gateway with Mallory’s MAC address

Solution: The router/gateway is the system that relays the user’s traffic to the Internet. ARP

resolves IP addresses to MAC addresses. To spoof the gateway via ARP, Mallory claims that the

Gateway’s IP maps to her MAC address.

Q9.2 (1 point) Mallory is on the same local network as Alice. She wants to intercept Alice’s traffic destined

for the Internet by providing false information about the Gateway Router.

If Mallory uses DHCP spoofing, what information must she substitute in her malicious replies?

A Substitute the IP address normally provided by the gateway with Mallory’s IP address

B Substitute the MAC address normally provided by the gateway with Mallory’s MAC address

Solution: The router/gateway is the system that relays the user’s traffic to the Internet. DHCP

provides network configuration, including the IP of the default gateway. To spoof the gateway

via DHCP, Mallory sends a configuration claiming that the gateway is at her IP address.

Q9.3 (2 points) Alice restarts her computer and rejoins the network. She broadcasts a Client Discover

message to get a network configuration via DHCP.

Mallory sends a malicious DHCP Offer to Alice. Which fields in this offer would Mallory alter to

position herself as a Man-in-the-Middle? Select all that apply.

A Gateway Router IP C Alice’s public key E None of the above

B Alice’s IP Address D WiFi WPA2 pre-shared key

Solution: By spoofing the Gateway Router, Mallory ensures that when Alice sends messages to

the internet, she sends them to Mallory first.

Final (Question 9 continues…) Page 27 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 9 continued…)

Q9.4 (1 point) The coffee shop owner wants to improve security. Which of the following defenses would

effectively mitigate these vulnerabilities? Select all that apply.

A Implementing WPA2-PSK will prevent Mallory from spoofing ARP packets even if she knows

the WiFi password.

B DHCP attacks are trivial to fix by having the router sign all DHCP offers with a hardcoded

certificate.

C None of the above

Solution: DHCP spoofing is hard to fix because when a user first connects, they don’t know who to

trust (no root of trust), so they generally have to accept the first valid-looking offer. Signing doesn’t

help because the user doesn’t know what public key to use to verify signatures. WPA2-PSK doesn’t

help either, because if Mallory knows the Wifi password, Mallory can compute the cryptographic keys

needed to eavesdrop on all Wifi packets and send spoofed Wifi packets.

EvanBot and CodaBot are working on a project at a coffee shop. Mallory is connected to the same local

network (LAN) and wants to intercept their traffic.

Mallory is an on-path attacker who can guarantee that her packets arrive before any legitimate packets,

100% of the time.

Q9.5 (2 points) EvanBot connects to the network for the first time and broadcasts a DHCP Client

Discover message.

To trick EvanBot into accepting her configuration, how many packets is Mallory required to send

that contain a falsified Source IP or Source MAC address (i.e., pretending to be the legitimate server

in Source IP address or Source MAC address of the packet header)?

A 0 B 1 C 2 D More than 2

Solution: 0 packets with falsified Source IP/MAC address.

Because DHCP clients typically accept the first valid offer they receive, regardless who it is from, and

Mallory is guaranteed to be faster, she does not need to forge the packet headers to look like the

legitimate server. She can simply reply as herself (a rogue server) with her own IP/MAC address, and

EvanBot will accept the offer because it arrived first.

Q9.6 (2 points) CodaBot is already connected to the network. He wants to send a packet to the real

Gateway Router (IP 10.1.6.1), but his ARP cache is empty.

CodaBot broadcasts: “Who has IP 10.1.6.1?”.

How many packets does Mallory need to send to poison CodaBot’s ARP cache and force him to

send his traffic to her instead of the real router?

A 0 B 1 C 2 D More than 2

Final (Question 9 continues…) Page 28 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 9 continued…)

Solution: 1 packet.

Mallory only needs to send one malicious ARP response: “My IP is 10.1.6.1 and my MAC address

is [Mallory's MAC address]”. Because of the race condition vulnerability in ARP, CodaBot will

accept this single response if it arrives before the real router’s response.

Q9.7 (2 points) What kind of attackers can execute a DHCP spoofing attack? Select all that apply.

A Man-in-the-middle C Off-path

B On-path D None of the above

Solution: To successfully spoof a DHCP response, the attacker must be able to see the client’s DHCP

Discover or Request broadcast to know when to respond (and often to learn transaction IDs, so they

can include the transaction ID in their response).

• On-path attackers can see packets and inject spoofed packets, so they can perform this attack.

• Man-in-the-middle attackers can see, modify, and drop packets, so they can also perform this attack

(and are often the result of it).

• Off-path attackers are defined as unable to see packets, so they cannot execute this attack because

they cannot see the initial request. Also, DHCP packets are not forwarded outside the local area

network, so an off-path attacker (on a different LAN) cannot get a malicious DHCP packet to the

victim.

Final Page 29 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q10 Web Security: Criss Cross Apple Sauce 🍏 (12 points)

Q10.1 (2 points) Alice visits a search engine that displays her search terms back to her on the results page.

For example, if she searches for “cats”, the page displays: You searched for: cats.

Mallory notices that the website does not sanitize this output. She creates a link containing a

malicious JavaScript payload in the search query and tricks Alice into clicking it. When Alice clicks

the link, the script executes in her browser.

What specific type of attack is this?

A Stored XSS C Cross-Site Request Forgery (CSRF)

B Reflected XSS D SQL Injection

Solution: Reflected XSS. The malicious script is not stored on the server’s database; it is “reflected”

off the web server immediately as part of the response to the specific request (the search query).

Q10.2 (1 point) Mallory creates a malicious website called freemoney.com. On this page, she places a

“Claim Prize” button.

Directly on top of this button, she layers a transparent (invisible) <iframe> that loads Alice’s

bank account settings page, specifically positioning the “Delete Ac=count” button directly over her

“Claim Prize” button.

Alice visits freemoney.com and clicks “Claim Prize,” but she unknowingly clicks the “Delete

Account” button on the invisible bank page.

What specific type of attack is this?

A Phishing C Clickjacking (UI Redressing)

B Cross-Site Request Forgery (CSRF) D Man-in-the-Middle (MITM)

Solution: Clickjacking (UI Redressing). The attacker uses transparent layers to trick the user into

clicking on a UI element (the bank button) that is different from what they perceive they are clicking

(the prize button).

Q10.3 (2 points) A web developer tries to prevent XSS by writing a filter that simply removes the text

<script> and </script> from all user input.

Which of the following payloads would successfully bypass this specific filter and execute

JavaScript?

A <script>alert(1)</script>

B

C <bold>alert(1)</bold>

D Click me

Final (Question 10 continues…) Page 30 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 10 continued…)

Solution: . Since the developer only filters the specific

<script> tag, the attacker can use other HTML tags that support event handlers (like onerror on an

image) to execute JavaScript.

Q10.4 (2 points) Mallory creates a malicious website containing a hidden HTML form. When Alice visits

Mallory’s site, a script automatically submits this form to bank.com to transfer money.

Why does bank.com accept this request and transfer the money, even though Alice did not intend

to click the button?

A Mallory guessed Alice’s password and included it in the form.

B Alice’s browser automatically attached her bank.com session cookies to the request.

C Mallory intercepted Alice’s Wi-Fi traffic and modified her packets.

D The bank’s server allows any request that comes from the same IP address as Mallory.

Solution: Alice’s browser automatically attached her bank.com session cookies to the request. The

core vulnerability of CSRF is that browsers automatically include ambient credentials (cookies) with

cross-site requests, so the server cannot distinguish between a user clicking a button and a script

clicking it for them.

Q10.5 (1 point) A server defends against CSRF by checking the Referer header. It rejects requests where

the Referer is evil.com. However, to protect user privacy, the server accepts requests where the

Referer header is missing (blank).

How can Mallory bypass this defense?

A By encrypting the Referer header so the server cannot read it.

B By spoofing the IP address to look like it came from the server.

C By configuring her website (e.g., using <meta name="referrer" content="no-

referrer">) to tell the browser not to send a Referer header.

D It is impossible to bypass; browsers always send the Referer header.

Solution: By configuring her website to tell the browser not to send a Referer header. If the server

“fails open” (accepts requests with no header), the attacker simply needs to suppress the header to

bypass the check.

Final (Question 10 continues…) Page 31 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 10 continued…)

Q10.6 (2 points) Alice wants to implement a strong defense against XSS that restricts where scripts can

be loaded from. She configures her server to send a specific HTTP header that tells the browser:

“Only load scripts from https://mysite.com. Block all other scripts.”

What is the name of this defense?

A Same-Origin Policy (SOP) C Cross-Site Request Forgery (CSRF) Token

B Content Security Policy (CSP) D Referer Validation

Solution: Content Security Policy (CSP). CSP allows site administrators to declare approved sources

of content that browsers are allowed to load, effectively mitigating XSS by blocking malicious inline

scripts or scripts from unauthorized domains.

Q10.7 (2 points) The most robust defense against CSRF is the use of a CSRF Token (a random, secret value

included in forms).

Why does this prevent Mallory from successfully forging a request from evil.com?

A The token encrypts the session cookie so Mallory cannot use it.

B Mallory cannot read the token from the legitimate site due to the Same-Origin Policy, so she

cannot include the correct token in her forged request.

C The token verifies that the IP address of the request matches the IP address of the user.

D The token prevents the browser from sending cookies to the server.

Solution: Mallory cannot read the token from the legitimate site due to the Same-Origin Policy. While

Mallory can force the browser to send a request (which includes cookies), she cannot read the response

or the content of the legitimate page to find the secret token. Without that token, the server rejects

the forged request.

Final Page 32 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q11 Memory Safety: Jonah Dreams of Sheep 🐑 (12 points)

Consider the following vulnerable C code:

1 void sleep() {

2 char dream[24];

3 fread(dream, 24, 1, stdin);

4 count_sheep(dream);

5 }

6

7 void count_sheep(char* input) {

8 size_t num_sheep;

9 fread(&num_sheep, sizeof(size_t), 1, stdin);

10

11 if (num_sheep > 64) {

12 exit(1);

13 }

14 printf(input);

15 }

Stack at Line 9

RIP of sleep

(1)

(2)

(3)

RIP of count_sheep

SFP of count_sheep

num_sheep

Assumptions:

• All memory safety defenses are disabled.

• There is a copy of SHELLCODE at address 0xdeadbeef.

• There is no compiler padding.

• RIP of sleep is located at address 0xffffd634.

Q11.1 (0.5 points) What goes in blank (1) in the stack diagram above?

A dream B input C num_sheep D RIP of sleep E SFP of sleep

Q11.2 (0.5 points) What goes in blank (2) in the stack diagram above?

A dream B input C num_sheep D RIP of sleep E SFP of sleep

Q11.3 (0.5 points) What goes in blank (3) in the stack diagram above?

A dream B input C num_sheep D RIP of sleep E SFP of sleep

Q11.4 (1.5 points) Which of the following memory safety vulnerabilities are present in the above code?

A Stack Buffer Overflow C Off-by-one E None of the above

B Heap Buffer Overflow D Format String Vulnerability

Final (Question 11 continues…) Page 33 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 11 continued…)

Warning: Q11.5 and Q11.6 are very hard. Consider attempting all other questions before

spending too much time on these two parts.

Q11.5 (5 points) Provide an input to the fread call on Line 3 that will help us execute SHELLCODE.

If a part of the input can be any non-zero value, use 'A' * n to represent n bytes of garbage.

For the purposes of this question, the %*u specifier reads one argument from the stack (call it m),

treats it as an integer, and prints m bytes. It then proceeds to read a second argument off the stack,

but does nothing with it.

Hint: When processed by printf, %hhn writes one byte to the address given by the corresponding

argument; the value written is the number of characters printed so far.

' \x0c\xd6\xff\xff ' + '%*u' + ('%c' * 2) +

'%hnn' + \xef\xbe\xad\xde + ('A' * 5)

Solution:

Let’s first take a look at the stack diagram:

0xffffd634 [4] RIP of sleep arg12

0xffffd630 [4] SFP of sleep arg11

0xffffd618 [24] dream arg5 - arg10

0xffffd614 [4] input arg4

0xffffd610 [4] RIP of count_sheep arg3

0xffffd60c [4] SFP of count_sheep arg2

0xffffd608 [4] num_sheep arg1

Our exploit resembles the method for exploiting off-by-one vulnerabilities. The main idea of our exploit

is to modify an SFP pointer to cause the stack to become “misaligned”, so that a location that already

has &SHELLCODE stored in memory is interpreted by the CPU as a RIP.

Why so complicated? Why not just overwrite a RIP stored on the stack? Well, the format string

vulnerability will allow us (the attacker) to write one byte of our choice somewhere on the stack.

Overwriting just one byte of a RIP is not enough to replace it with the address of SHELLCODE. We don’t

have any way to write an entire word (4 bytes), because that would require a long format specifier (e.g.,

to write each of the bytes separately), and dream isn’t big enough for that. So we need to get clever.

In more detail:

We note that the hint tells us to use a format specifier, and we take advantage of the unsanitized printf

call on line 14 to execute a format string attack.

Final (Question 11 continues…) Page 34 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 11 continued…)

We will overwrite one byte of the SFP of count_sheep. We know that it contains the value

0xffffd630 (the address of SFP of sleep). The format string vulnerability allows us to manipulate the

least significant byte of this value, with a %hhn format specifier. We can store the address of SHELLCODE

somewhere in our dream buffer and, using the %hhn format specifier, rewrite the SFP of count_sheep

to point 4 bytes below the address where &SHELLCODE is stored.

To do this, we need to make sure that %hhn writes to the address where the SFP of count_sheep is

stored, i.e., to 0xffffd60c. So, we write 0xffffd60c into the start of dream (the position marked

arg5, i.e., the 5th argument that printf reads from), and we’ll construct the format string to so that

the %hhn is the 5th specifier in the format string.

The first format specifier in the string will be '%*u'. This will read two words from the locations

marked arg1, arg2, i.e., from num_sheep and the SFP of count_sheep, and write num_sheep many

bytes. Since we can control the contents of num_sheep (by specifying an appropriate input to the

fread on line 9), we control how many bytes printf writes. This will be useful in a moment.

Next, we need to consume the 3rd, and 4th argument to printf (arg3, arg4) and effectively ignore

them. We use 2 %c format specifiers for this purpose, so that our argument pointer moves up to point

to the start of dream (arg5).

Next, we add '%hnn'. This format specifier will read an address from arg5 (the start of dream) and

write one byte to that address. We’ve previously arranged that this address will be 0xffffd60c, i.e.,

the address where the SFP of count_sheep is stored. So this will overwrite the first byte, i.e., the least

significant byte, of the SFP of count_sheep (with a value that the attacker can control, by controlling

the input to the fread on line 9).

Then, we add the address \xef\xbe\xad\xde. This 4-byte value needs to be stored somewhere on

the stack, and here is a good spot. By overwriting the SFP of count_sheep, we’ll cause the stack

to be mis-aligned so that this location on the stack gets treated by the CPU as the RIP of sleep.

\xef\xbe\xad\xde appears 15 bytes after the beginning of dream, i.e., at address 0xffffd627.

Therefore, we want to mis-align the stack so that address 0xffffd623 is treated as the SFP of sleep

and address 0xffffd627 is treated as the RIP of sleep. We can do this by overwriting the SFP of

count_sheep so it contains the address 0xffffd623, i.e., overwriting its least significant byte with

0x23.

To overwrite its least significant byte with 0x23, we need to arrange that printf has printed 0x23

(i.e., 35 in decimal) bytes. Before the '%hnn' specifier, the format string prints \x0c\xd6\xff\xff (4

bytes), whatever is printed by the '%*u' (num_sheep bytes), then whatever is printed by '%c' * 2

(2 bytes). Therefore, we want num_sheep + 6 to be 35, which requires num_sheep = 29 = 0x1D.

When count_sheep returns, the prologue of count_sheep will execute pop %ebp, which will set

%ebp to 0xffffd623 (since the location storing the SFP of count_sheep was modified to hold

0xffffd623). When sleep returns, its prologue will first execute mov %ebp, %esp, which copies the

value in %ebp (0xffffd623) into %esp (now %esp contains 0xffffd623); then executes pop %ebp,

which adds 4 to %esp (now %esp contains 0xffffd627); then executes ret, which reads the pointer

stored at 0xffffd627 and starts executing code there. Since we previously arranged that &SHELLCODE

is stored at address 0xffffd627, the ret in sleep’s prologue will start executing SHELLCODE.

Final (Question 11 continues…) Page 35 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 11 continued…)

There are multiple valid answers to this question. \xef\xbe\xad\xde can be moved up to 3 bytes

later in the exploit string, as long as the answer to Q11.6 is increased by the same amount. It can also

be moved earlier (but not into the first four bytes), with adjustments to the answer to Q11.6.

Q11.6 (2 points) Provide an input to the fread call on Line 9 that, together with your answer to the

previous part, will execute SHELLCODE.

If a part of the input can be any non-zero value, use 'A' * n to represent n bytes of garbage.

'\x1D\x00\x00\x00'

Q11.7 (1 point) Which memory safety defenses would cause the correct exploit (without modifications)

to fail? Consider each choice independently.

A ASLR B Non-Executable Pages C None of the above

Solution: ASLR would prevent the exploit, because the RIP of sleep would be at a different

address.

We had a bug in this question. We didn’t clearly specify what memory region SHELLCODE is

stored in. As a result, it’s not possible to tell reliably whether non-executable pages would stop

the exploit. If SHELLCODE is stored in the heap or stack, non-executable pages would stop the

exploit; if for some reason SHELLCODE was found in the code region (e.g., it already happened to

appear in the code!?), then non-executable pages would not stop the exploit. Therefore, we will

ignore whether or not you marked the 2nd option, and only grade the 1st option.

Q11.8 (1 point) Would the same exploit work if the call to fread on line 3 was replaced with fgets (with

the same parameters)?

A Yes, because we can still write in the correct exploit input into dream.

B Yes, because fgets does the same thing as fread when given the same number of bytes

to read.

C No, because fgets will overwrite the last byte of the SFP of sleep with a null terminator.

D No, because the amount of space in dream required to perform the exploit will no longer be

sufficient.

Solution: The key difference between fread and fgets here is that given a buffer of n bytes,

fread will read exactly n bytes into the buffer, while fgets will read n-1 bytes into the buffer

and append a null terminator. Since our exploit input is only 21 bytes long and does not contain

any null bytes, it could be used with either fread or fgets.

Final (Question 11 continues…) Page 36 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 11 continued…)

Post-Exam Activity: The Meaning of it All.
EvanBot, in search of a greater truth that has eluded them for far too long, has fallen deep into their

own mind, seemingly trapped indefinitely in their pensive state. Help EvanBot escape by answering life’s

great mystery:

Select your favorite topic from the cryptography portion of the course.

A Diffie-Hellman D El Gamal

B Encrypt-then-MAC E MAC-then-Encrypt (You wouldn’t dare)

C PRNGs F None of the above

Showcase how this topic illuminates the meaning of life (you may use words, math, drawings, etc.):

Comment Box
Congratulations for making it to the end of the exam! Feel free to leave any final thoughts, comments,

feedback, or doodles here:

Final Page 37 of 37 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

	Honor Code 📜
	Potpourri 🍲
	Memory Safety: Tomayto 🍅
	Memory Safety: I've played these games before… 🍅
	Cryptography: Secret Santa 🎅
	Cryptography: Double Dipping 🍯
	Networking: The Fate of Streamify 🎶
	Web Security: Super Query League ⚽
	Network Security: Caffè Strada ☕
	Web Security: Criss Cross Apple Sauce 🍏
	Memory Safety: Jonah Dreams of Sheep 🐑
	Post-Exam Activity: The Meaning of it All.
	Comment Box

