C5 161 Introduction to
Fall 2025 Computer Decurity

Final

Name:

Student ID:

This exam is 170 minutes long. There are 11
questions of varying credit. (100 points total)

Question:| 1 | 2|34 |5|6|7[8]|9]|10]11|Total

Points: 0181889719]|16(11|12])12] 100

For questions with circular bubbles, you may select only
one choice.

O Unselected option (Completely unfilled)
@ Don’t do this (it will be graded as incorrect)
@ Only one selected option (completely filled)

For questions with square checkboxes, you may select one
or more choices.

B You can select
I multiple squares (completely filled).
[V] (Don’t do this)

Anything you write outside the answer boxes or you eress
out will not be graded. If you write multiple answers, your
answer is ambiguous, or the bubble/checkbox is not entirely
filled in, we may grade the worst interpretation.

Pre-Exam Activity: Caesar Cipher (0
points):

EvanBot wishes to share the following
message, but doesn’t want it to fall into the
wrong hands. Decipher away!

: Hint: Shift +3 \
J | —
R | —
R | —
G| —
o| —
X[—
F |~
N |~

Q1 Honor Code =

(0 points)

result in, at minimum, negative points on the exam.

I understand that I may not collaborate with anyone else on this exam, or cheat in any
way. I am aware of the Berkeley Campus Code of Student Conduct and acknowledge that
academic misconduct will be reported to the Center for Student Conduct and may further

Read the honor code above and sign your name:

Page 1 of 20

This content is protected and may not be shared, uploaded, or distributed.

Q2 Potpourrig (8 points)

Q2.1 (0.5 points) TRUE OR FALsE: The principle of “Least Privilege” dictates that a program or user should
only be granted the specific permissions required to perform their intended task and nothing more.

O True Q Faise

Q2.2 (0.5 points) TRUE or Faise: Using GDB, if you want to C code:

inspect the contents of the buffer buf in the code to the 1| void func({
right, you can break at line 7 and then run the command 2 char buf[16];
x/16x buf. 3 .
4|}
O True O FarLsk 5
You run the code in GDB, break at line 7, and run info frame. 6 | void vulnerable O{
You receive the output to the right. 7 T
8 func();
Q2.3 (0.5 points) TRUE oR FALSE: The RIP of vulnerable() is 9|3}
at the address Oxffffdcbhc.
GDB Output:
O True O Eatse (gdb) info frame
Q2.4 (0.5 points) TRUE OR FALSE: The value of the SFP of func () S o 4 st)
is Oxf£££dc58. avec registers:
ebp at Oxffffdch8,
O True O FarLsk eip at Oxffffdcbc

Q2.5 (0.5 points) TRUE or FALsSE: Format string vulnerabilities allow an attacker to read data from the
stack, but they cannot be exploited to write to memory or execute shellcode.

O True Q Faise

Q2.6 (0.5 points) TRUE OR FALSE: Bear Systems modifies ASLR: instead of randomly generating the
memory offset when the program starts, they randomly generate the memory offset when the
program is compiled and hardcode this offset into the binary. Compared to standard randomized
ASLR, Bear Systems’ modification improves security against memory safety exploits.

O True O FarLsk

Q2.7 (0.5 points) TRUE OR FALSE: The HMAC algorithm is specifically designed to be secure against length
extension attacks (where an attacker can compute H(M | M) for some M’ given only H(M),
the length of M, and M’).

O True Q FarLse

Q2.8 (0.5 points) TRUE orR Farse: In AES-CBC mode, encryption cannot be parallelized because the
encryption of block C; depends on the ciphertext of the previous block C;_;, but decryption can be
parallelized.

O True Q Faise

Final (Question 2 continues...) Page 2 of 20 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued...)

Q2.9 (0.5 points) TRUE oR FaLsk: If an attacker intercepts a Diffie-Hellman key exchange where Alice
sends A = g® mod p and Bob sends B = g® mod p, the attacker can easily compute the shared secret
S if they can solve the Discrete Logarithm Problem.

O True Q Faise

Q2.10 (0.5 points) TRUE oR FALsE: El Gamal encryption is deterministic; if you encrypt the same message
M twice with the same public key, you will always generate the exact same ciphertext (C;, Cy).

O True O FarLsk

Q2.11 (0.5 points) TRUE OR FALSE: The “Same-Origin Policy” allows a script loaded by http://example.
com to read the properties of a document from https://example.com because they share the
same domain name and the protocol doesn’t need to match.

O True Q Faise

Q2.12 (0.5 points) TRUE or FALsE: If a website sets a cookie with Domain=. example. com, that cookie will
be sent by the browser in requests to both www.example.com and secure.example. com.

O True Q FarLse

Q2.13 (0.5 points) TRUE OR FALSE: In a TCP handshake, if the Initial Sequence Number (ISN) is generated
randomly with a cryptographically secure pseudorandom number generator, this will prevent off-
path attackers from easily injecting packets into the connection by guessing the sequence number.

O True Q Faise

Q2.14 (0.5 points) TRUE or FaLse: DNSSEC with NSEC prevents “zone walking” (enumerating all valid
domain names in a zone) by using NSEC records that return a cryptographic hash of the queried
domain name rather than the name itself.

O True Q Faise

Q2.15 (0.5 points) TRUE oR FALsE: The BGP (Border Gateway Protocol) includes built-in cryptographic
verification to ensure that an Autonomous System (AS) actually owns the IP prefixes it advertises,
preventing prefix hijacking attacks by default.

O True O FarLsk

Q2.16 (0.5 points) TRUE oR FaLsk: The Kaminsky DNS attack allows an attacker to poison the DNS cache
of a recursive resolver by flooding it with spoofed responses for non-existent subdomains (e.g.,
1.google.com, 2.google.com), aiming to overwrite the authority records for the target domain
(e.g., google.com).

O True Q Faise

Final Page 3 of 20 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

© 0 N O O b WN -

L
N = O

Q3 Memory Safety: Tomayto @

Consider the following vulnerable C code:

void tomayto(int count, char *input) {
char buffer[32];
if (count > 32) { return; }
memcpy (buffer, input, count);

}

void main() {
int user_int = 0;
char user_string[40];
fread(user_string, 4, 11, stdin);
tomayto(user_int, user_str);

}

(8 points)
Stack at Line 5

RIP of main

SFP of main

(1)

(2)

(3)

(4)

RIP of tomayto

SFP of tomayto

buffer

« All memory safety defenses are disabled.

+ You run GDB, set a breakpoint at line 4, run and find that buffer starts at address 0x50££d100.
+ Yourun GDB, set a breakpoint at line 4, run and find that the RIP of tomayto has the value 0x08048999.

+ Your goal is to execute the 32-byte long SHELLCODE.

(0.5 points each) What goes in the blanks in the stack diagram above?

Q3.1 Blank (1):
Q3.2 Blank (2):
Q3.3 Blank (3):
Q3.4 Blank (4):

@ count
@ count
@ count

@ count

user_string
user_string
user_string

user_string

© user_int
© user_int
© user_int

© user_int

® input
® input
® input
® input

Q3.5 (1 point) Which of the following memory safety vulnerabilities are present in the above code?

Format String Vulnerability Stack Buffer Overflow

Signed/Unsigned [D] ret2ret

Heap Overflow
® None of the above

Q3.6 (4 points) Provide an input to fread on Line 10 that would cause the program to execute shellcode.

If a part of the input can be any non-zero value, use 'A' * n to represent n bytes of garbage.

Don’t worry about segfaults that could possibly occur during the memcpy (all memory is mapped

in). If you weren’t worried about that, please ignore this remark.

Q3.7 (1 point) Which changes need to be made to make this code memory-safe?

Line 1: Change int count to size_t count;
Line 3: Change count > 32to count >= 32
Line 4: Add input [31] = '\0'; before the memcpy on line 5

El Line 8: Change int user_int = 0; to int user_int = -1;

Final Page 4 of 20

This content is protected and may not be shared, uploaded, or distributed.

CS 161 — Fall 2025

© 0 N O O b WN -

(e
o

Q4 Memory Safety: I've played these games before... @ (8 points)

Consider the following vulnerable C code:

void tomahto() { Stack at Line 6

char cage[12]; RIP of main
fgets(cage, 12, stdin); SFP of main
printf (cage);
gets(cage) ;)

} RIP of tomahto

(2)

void main() { 3)
tomahto();

} (4)

« Stack canaries are enabled. All other memory safety mitigations are disabled.

» You run GDB, set a breakpoint at line 5, run and find that cage starts at address Oxf£££d100 and that
there is a copy of SHELLCODE at address Oxf£££d204.

« Through trial and error, you discover that the stack canary for tomahto is the 4th value printf reads
from the stack when it looks for arguments (i.e., it is offset 4 words away from the stack pointer printf
uses).

(0.25 points each) What goes in the blanks in the stack diagram above?

Q4.1 Blank (1): @ cage SFP of tomahto © canary of tomahto ® canary of main

Q4.2 Blank (2): (@ cage SFP of tomahto © canary of tomahto ® canary of main

Q4.3 Blank (3): @ cage SFP of tomahto © canary of tomahto ® canary of main

Q4.4 Blank (4): @ cage SFP of tomahto © canary of tomahto ® canary of main

Q4.5 (1 point) Which of the following memory safety vulnerabilities are present in the above code?
Format String Vulnerability Stack Buffer Overflow Heap Overflow

Signed/Unsigned [D] ret2ret ® None of the above
Q4.6 (2 points) Which of these inputs to fgets on Line 3 will always leak the value of the stack canary
in the tomahto stack frame? Select all that apply.

Note: Stack canaries are four random bytes and do not contain a null byte.
'%X' *x 4 (I%CI * 3) + '%X' '%Il' *x 4
"hx' * 3 [D] '%x' + ("%s' * 3) ® None of the above

In the next part, provide an input to gets on line 5 that would cause the program to execute SHELLCODE,
assuming the correct input has been provided to fgets on line 3. You may use CANARY to refer to the
correct 4-byte string value of the stack canary, as leaked by printf.

If a part of the input can be any non-zero value, use 'A' * n to represent n bytes of garbage.

Q4.7 (4 points) Input to gets on line 5:

Final Page 5 of 20 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q5 Cryptography: Secret Santa ™ (9 points)

Annabella and Fred want to establish a secure communication channel. They require a protocol that
supports asynchronous communication (Annabella can send a message even if Fred is offline, i.e., even if
Fred is not connected to the Internet at that moment), mutual authentication, and forward secrecy.

Q5.1 (2 points) Why is a basic, unauthenticated Diffie-Hellman exchange vulnerable to Man-in-the-
Middle (MITM) attacks?

® The discrete logarithm problem is easier to solve when values are intercepted.
Diffie-Hellman keys are too short to resist brute-force attacks.
© The public keys exchanged are not cryptographically bound to the users’ identities.

® Servers cannot store Diffie-Hellman public values.

Q5.2 (1 point) Annabella and Fred decide to simply publish static (long-term) Diffie-Hellman (DH) public
keys to a single, central, trusted server. They use these same keys to derive a shared secret for every
message they ever send.

Why does this approach fail to provide forward secrecy?
@® Static DH outputs are deterministic and therefore predictable by random guessing.
The server must regenerate the group parameters for each session.
© If a long-term private key is stolen later, the attacker can decrypt all past recorded traffic.

® Public keys expire too quickly to be useful.

The Protocol
To solve these issues, Annabella and Fred adopt a new scheme:

1. Fred uploads keys: Fred generates the follow- 3. Key derivation: Annabella computes the
ing and uploads the public parts to a central shared secret SK by combining four Diffie-Hell-
trusted server: man (DH) calculations:

+ Identity Key (IK ;): Long-term static key pair. 1. K, = DH(IK ,, SPK)

(Binds Annabella’s Identity to Fred’s Signed Key)
2. K, = DH(EK 4,IK)
(Binds Session to Fred’s Identity)
3. K3 = DH(EK 4, SPKp)
(Binds Session to Fred’s Signed Key)
2. Annabella fetches keys: If Annabella wants 4. K, = DH(EK 4, OPK[i])
to message Fred, she fetches Fred’s IK, SPK, (Provides Strong Forward Secrecy)

SK = H(K1 || K2 || Ks || K4)

+ Signed Pre-Key (SPK): A medium-term key
pair signed by IK .

+ One-Time Pre-Keys (OPK [i]): A batch of key
pairs intended to be used once and deleted. Not

signed.

and a single OPK . [i] from the server; verifies the
signature, and generates a fresh Ephemeral Key
pair (EK 4).

Final (Question 5 continues...) Page 6 of 20 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 5 continued...)

Q5.3 (2 points) The calculation includes the term DH(IK 4, SPK). Why does this term specifically
provide assurance to Annabella that the recipient is actually Fred?

@ Because Annabella verified the signature on SPK, she knows only the holder of Fred’s
private Identity Key could have authorized it.

Because Annabella’s Identity Key (IK 4) is included, Fred automatically knows who sent the
message.

© Because DH values are universally unique, no one else could generate this specific integer.
® Because the server performs a Zero-Knowledge Proof to validate the Pre-Key before storage.

Q5.4 (1 point) Which architectural feature specifically enables asynchronous communication (Annabella
sending a message while Fred is offline)?

@® The use of symmetric Key Derivation Functions (KDF).

The requirement for Annabella to sign her own messages.
© The inclusion of One-Time Pre-Keys for forward secrecy.

® The use of a server to store Fred’s pre-published public keys.

Q5.5 (1 point) Why couldn’t Annabella and Fred just use a standard, ephemeral Diffie-Hellman hand-
shake to achieve asynchronous messaging?

® Fred’s computer cannot generate DH keys when it is not connected to the Internet.
Ephemeral DH requires both parties to be online simultaneously to exchange values.
© Servers are technically incapable of storing DH integers.
® Standard DH is too computationally expensive for mobile devices.

Q5.6 (1 point) Consider a simplified protocol that only computes SK = DH(EK 4, IK).

Which security properties are missing from this specific exchange? Select all that apply.

Confidentiality against passive eavesdroppers. [D] Forward Secrecy.
Authentication of Annabella (to Fred). (® None of the above
Authentication of Fred (to Annabella).

Q5.7 (1 point) Fred modifies the scheme to publish only an identity key IK and a batch of one-time
pre-keys OPK, but not SPK. (no signed pre-key is published). The secret key is computed as

Select all the security guarantees/properties this modified scheme provides.
Authentication of Annabella (Fred can verify he is speaking with Annabella)
Authentication of Fred (Annabella can verify she is speaking with Fred)
Forward secrecy (as long as unused one-time pre-keys remain)

[D] Asynchronous communication (only while unused one-time pre-keys remain)

(® None of the above

Final Page 7 of 20 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q6 Cryptography: Double Dipping & (7 points)

Recall the implementation of AES-CBC encryption:

B b B
(LITT[ITTT] (ITTI[TITTT] (LITT[ITTT]

IV———® ¥ { D
K—>| AES Encryption K—>| AES Encryption : K—>| AES Encryption
[LITTITTTIT [TTTT] [LITTITTTT]

G Cy Ca

+ Alice uses AES-CBC encryption to encrypt the plaintext P = P, | B, | B;. She sends the correspond-
ing ciphertext C = C; || C, | C5 to Bob.
+ Alice and Bob use a key Kj.

Q6.1 (2 points) Under AES-CBC, which of the following are the correct value for C5? Select all that apply.
CszEKl(C2) @C3ZEK1(P1@P2@P3@IV)
[B] G = Ex, (G © By) [£] G = Ex (R ® K, ® B)
Cy=Ey (P, ® Eg (R®Eg (R &IV)) Cy=Eg (C@R) @IV
Q6.2 (1.5 points) Mallory wants to manipulate the message. She flips the first bit of the I'V. She leaves
all ciphertext blocks (C, Cy, C3) unchanged.
What happens to the decrypted plaintext P’?
@ The first bit of P/ is flipped; all other blocks are correct.
The whole block P/ is garbled (randomized); all other blocks are correct.
© The first bit of P/ is flipped, and P} is completely garbled.
® The decryption fails completely due to padding errors.

Q6.3 (1.5 points) Alternatively, suppose Mallory flips the last bit of ciphertext block C;. She leaves
1V, C,, C5 unchanged.

What is the specific effect on the decrypted plaintext blocks P/ and P;?
@ Both P/ and P/ have their last bits flipped.
P/ has its last bit flipped; P is completely garbled.
© P/ is completely garbled; P, has its last bit flipped.
® P/ is completely garbled; P, is unaffected.

Final (Question 6 continues...) Page 8 of 20 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 6 continued...)

Consider the CBC-MAC scheme, which takes an input message M = (M, M,, ...

,M,) and key K, and

outputs a tag ¢. The same key is used for all CBC-MAC computations in this question.

Suppose for the next two subparts:

Ml
CITTTTTITTIT]

K—>| AES Encryption

CITTTITTI T
G

(ITTT]ITTIT]

K—

D

M

n

CITTTTTITTIT]

AES Encryption

(LTTT]
Gy

K—

D

AES Encryption

CITTTITTITT
t

Recall that Alice encrypted P with K, and sent it to Bob. Bob will also decrypt with K.
Assume that Alice used IV = 0 when encrypting P.

Before Bob can decrypt, Mallory (an on-path attacker) tampers with the first 2 ciphertext blocks so that

Bob receives C' = Cf |

C5 | Cs. Note that C; and I'V remain unchanged.

Alice also computes a CBC-MAC tag t on the plaintext P, using key K,, and sends it to Bob.

Bob decides to compute the CBC-MAC tag ¢’ on his tampered P’ (the decryption of the tampered C")
to verify the integrity of the plaintext.
Alice and Bob use K, as the key for CBC-MAC, and K for AES-CBC encryption.

Q6.4 (1 point) Bob decrypts C” to get P’. Which blocks of P’ will be guaranteed to be the same as the
corresponding blocks from P? Select all that apply.

[a] PY
[B] B

By
(® None of the above

Q6.5 (1 point) Is it possible for ¢ = ¢ (i.e., the MAC remains valid despite the tampering)?

No, because C; has been tampered with.

© No, because the plaintext P’ is different from P.

® No, because the attacker does not know the key K.

Final

Page 9 of 20

This content is protected and may not be shared, uploaded, or distributed.

CS 161 — Fall 2025

Q7 Networking: The Fate of Streamify (9 points)

Nazar is live-streaming video to Zoir over Streamify, their new streaming service. To send the video,
Nazar’s computer sends UDP packets to Zoir’s computer.

Suppose there are no security provisions: Zoir’s computer accepts the UDP packet if and only if it has
the correct UDP destination port. In UDP, port numbers are 16 bits.

Q7.1 (2 points) What is the probability that a single spoofed UDP packet from an off-path attacker is
accepted, if it uses the correct destination IP address and if the destination port is chosen randomly?

®1 1/28 © 1/2¢ ® 1/2% ® 1/2% ® 0

Q7.2 (2 points) Now suppose an on-path attacker observes a few packets sent by Nazar, and then wants
to send a new spoofed packet to Zoir. What is the best probability that the on-path attacker can
have their spoofed UDP packet be accepted by Zoir?

® 1 1/28 © 1/216 ® 1/2%4 ® 1/232 ® o0

Nazar and Zoir want stronger security, so they add a 16-bit integrity tag to each packet:

t = SHA256-HMAC(K, packet), where packet is the rest of the packet, and K is an 8-bit secret key
shared securely between Nazar and Zoir. A packet is accepted if and only if has both a correct 16-bit
destination port and correct 16-bit integrity tag ¢.

Q7.3 (2 points) An off-path attacker wants to send a spoofed packet to Zoir. What is the best probability
that the off-path attacker can have their spoofed UDP packet be accepted by Zoir, in this new design?
Assume the attacker doesn’t know the UDP port and has to guess it randomly.

®1 1/28 © 1/2¢ ® 1/2% ® 1/2% ® 0

Q7.4 (3 points) Now suppose an on-path attacker observes a few packets sent by Nazar, and then wants
to send a new spoofed packet to Zoir. What is the best probability that the on-path attacker can
have their spoofed UDP packet be accepted by Zoir, in this new design? Assume the attacker can
do any reasonable amount of computation before constructing the spoofed packet.

®1 1/28 © 1/21¢ ® 1/2% ® 1/232 ®o0

Final Page 10 of 20 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q8 Web Security: Super Query League 8 (16 points)

EvanBot has created a fantasy football app called FantasyLeague. Each user is able to name their team,
draft players, and manage lineups. The app relies on the following SQL tables:

Account Team Player
username string team_name string team_name string
password string draft_order | uint32_t player_name | string
team_name string completed boolean in_lineup boolean

When users create an account, they select a team_name that is used to represent their team. In each round
of drafting, the draft_order determines the order in which teams get to select players. Once a team
has run out of people to draft, completed is set to true and they can start playing. Each week, they set
the in_lineup variable for some of the players on their team, and score based on the people who are in
their lineup.

Q8.1 (3 points) To search for players, the app executes the following query:
SELECT player_name, team_name FROM Player WHERE player_name = '$search’;

Which of the following payloads, when injected into the $search parameter, will allow the attacker
to learn the username and password of every user in the Account table, if the attacker can see the
results of the query?

Select all that apply.

' OR 1=1; --

' UNION SELECT username, password FROM Account --

UNION SELECT username, password, team_name FROM Account --
' UNION SELECT password, username FROM Account --

' UNION SELECT * FROM Account --

F EE A EE

' UNION SELECT player_name, team_name FROM Player --

Final (Question 8 continues...) Page 11 of 20 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 8 continued...)

Q8.2 (3 points) Jonah’s jealousy knows no bounds. He decides to ban his rival, Fred, from the platform
entirely. To login, the app executes the following query:

SELECT * FROM Account WHERE username = '$username’;

When injected into the $username parameter of the login query, which of the following payloads
will delete the row Fred from the Account table, and only delete that row?

Select all that apply.

Note: DELETE FROM table WHERE condition removes rows from table that satisfy condition.

'; DELETE FROM Account WHERE username = 'Fred';

'; DELETE FROM Account WHERE username = 'Fred'; --

'; DELETE FROM Account WHERE username = 'Fred' AND '1' = '1

@ '; DELETE FROM Account WHERE username = 'Fred' AND '1' = '1';

'; DELETE FROM Account WHERE username = 'Fred' AND '1' = '1'; -—-
'; DELETE FROM Player WHERE player_name = 'Fred';

'; DELETE FROM Player WHERE player_name = 'Fred'; --

Q8.3 (2 points) The login page has a “Check Username” feature to see if a user exists. It is vulnerable to
SQL injection but does not display any database content. It simply prints “User Found” if the query
returns any rows, and “User Not Found” otherwise.

SELECT * FROM Account WHERE username = '$user’';

You suspect the admin user has a password starting with the letter ‘s’. Which payload(s) will let
you infer whether your suspicion is correct, based on whether the program prints “User Found” or
not in response to your payload?

Select all that apply.

Note: substring(str, start, length) extracts length characters from str beginning at
index start.

admin' --
[B] admin' OR '1'='1' —-
[c] admin' AND substring(password, 1, 1) = 's' --

[D] admin' AND '0'='1' UNION SELECT * FROM Account WHERE substring(password,
1, 1) = 's' —-

Final (Question 8 continues...) Page 12 of 20 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 8 continued...)

Q8.4 (3 points) You can ask the app to release a player from their team. The app will execute the following

Q8.5

Q8.6

Final

SQL command.

DELETE FROM Player
WHERE player_name = '$player’
AND team_name = '$my_team';

You are logged in as guest and your team name is GuestTeam. Assume $my_team is set to
GuestTeam and cannot be modified. You control $player but not $my_team.

Provide a SQL payload for the $player input that will delete every player belonging to the rival
team Winners, without deleting players from other teams.

(3 points) On signup, the application executes the following SQL query as a prepared statement.
The user-provided inputs user and team are bound securely to the ? placeholders:

INSERT INTO Account (username, password, team_name)
VALUES (7, 'dummy_pass', 7);

Later, when a user views their team page, the app executes the following SQL query (notice how
there is no prepared statement here):

SELECT * FROM Team WHERE team_name = '$my_team';

Assume $my_team is retrieved securely from the Account table and matches the team provided
at signup.

Provide a stored-injection payload for the team parameter during signup that will drop the entire
Team table when the user visits their team page later.

(2 points) In 10 words or fewer, describe one other serious security flaw with the signup design in
the prior part. Do not mention SQL injection; find some other flaw.

Page 13 of 20 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q9 Network Security: Caffé Strada < (11 points)

Consider a local area network (LAN) at a coffee shop.

« Alice is a legitimate user trying to connect to the internet and communicate with Bob.
« Mallory is a malicious attacker on the same LAN.

+ The network uses standard ARP for address resolution and DHCP for configuration.

Q9.1 (1 point) Mallory is on the same local network as Alice. She wants to intercept Alice’s traffic destined
for the Internet by providing false information about the Gateway Router.

If Mallory uses ARP spoofing, what information must she substitute in her malicious replies?
® Substitute the IP address normally provided by the gateway with Mallory’s IP address
Substitute the MAC address normally provided by the gateway with Mallory’s MAC address
Q9.2 (1 point) Mallory is on the same local network as Alice. She wants to intercept Alice’s traffic destined
for the Internet by providing false information about the Gateway Router.
If Mallory uses DHCP spoofing, what information must she substitute in her malicious replies?
@ Substitute the IP address normally provided by the gateway with Mallory’s IP address
Substitute the MAC address normally provided by the gateway with Mallory’s MAC address
Q9.3 (2 points) Alice restarts her computer and rejoins the network. She broadcasts a Client Discover
message to get a network configuration via DHCP.

Mallory sends a malicious DHCP Offer to Alice. Which fields in this offer would Mallory alter to
position herself as a Man-in-the-Middle? Select all that apply.

Gateway Router IP Alice’s public key ® None of the above
Alice’s IP Address [D] WiFi WPA2 pre-shared key

Q9.4 (1 point) The coffee shop owner wants to improve security. Which of the following defenses would
effectively mitigate these vulnerabilities? Select all that apply.

Implementing WPA2-PSK will prevent Mallory from spoofing ARP packets even if she knows
the WiFi password.

DHCP attacks are trivial to fix by having the router sign all DHCP offers with a hardcoded
certificate.

© None of the above

Final (Question 9 continues...) Page 14 of 20 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 9 continued...)

EvanBot and CodaBot are working on a project at a coffee shop. Mallory is connected to the same local
network (LAN) and wants to intercept their traffic.

Mallory is an on-path attacker who can guarantee that her packets arrive before any legitimate packets,
100% of the time.

Q9.5 (2 points) EvanBot connects to the network for the first time and broadcasts a DHCP Client
Discover message.

To trick EvanBot into accepting her configuration, how many packets is Mallory required to send
that contain a falsified Source IP or Source MAC address (i.e., pretending to be the legitimate server
in Source IP address or Source MAC address of the packet header)?

®o 1 © 2 (® More than 2

Q9.6 (2 points) CodaBot is already connected to the network. He wants to send a packet to the real
Gateway Router (IP 10.1.6.1), but his ARP cache is empty.

CodaBot broadcasts: “Who hasIP 10.1.6.1?".

How many packets does Mallory need to send to poison CodaBot’s ARP cache and force him to
send his traffic to her instead of the real router?

®o 1 © 2 ® More than 2
Q9.7 (2 points) What kind of attackers can execute a DHCP spoofing attack? Select all that apply.

Man-in-the-middle Off-path

On-path ® None of the above

Final Page 15 of 20 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q10 Web Security: Criss Cross Apple Sauce ¥ (12 points)
Q10.1 (2 points) Alice visits a search engine that displays her search terms back to her on the results page.
For example, if she searches for “cats”, the page displays: You searched for: cats.

Mallory notices that the website does not sanitize this output. She creates a link containing a
malicious JavaScript payload in the search query and tricks Alice into clicking it. When Alice clicks
the link, the script executes in her browser.

What specific type of attack is this?
@ Stored XSS © Cross-Site Request Forgery (CSRF)
Reflected XSS ® SQL Injection
Q10.2 (1 point) Mallory creates a malicious website called freemoney.com. On this page, she places a
“Claim Prize” button.

Directly on top of this button, she layers a transparent (invisible) <iframe> that loads Alice’s
bank account settings page, specifically positioning the “Delete Ac=count” button directly over her
“Claim Prize” button.

Alice visits freemoney.com and clicks “Claim Prize,” but she unknowingly clicks the “Delete
Account” button on the invisible bank page.

What specific type of attack is this?
® Phishing © Clickjacking (UI Redressing)
Cross-Site Request Forgery (CSRF) ® Man-in-the-Middle (MITM)

Q10.3 (2 points) A web developer tries to prevent XSS by writing a filter that simply removes the text
<script> and </script> from all user input.

Which of the following payloads would successfully bypass this specific filter and execute
JavaScript?

@ <script>alert(1)</script>

© <bold>alert(1)</bold>

® Click me

Final (Question 10 continues...) Page 16 of 20 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 10 continued...)

Q10.4 (2 points) Mallory creates a malicious website containing a hidden HTML form. When Alice visits
Mallory’s site, a script automatically submits this form to bank. com to transfer money.

Why does bank. com accept this request and transfer the money, even though Alice did not intend
to click the button?

@® Mallory guessed Alice’s password and included it in the form.
Alice’s browser automatically attached her bank. com session cookies to the request.
© Mallory intercepted Alice’s Wi-Fi traffic and modified her packets.

® The bank’s server allows any request that comes from the same IP address as Mallory.

Q10.5 (1 point) A server defends against CSRF by checking the Referer header. It rejects requests where
the Referer is evil.com. However, to protect user privacy, the server accepts requests where the
Referer header is missing (blank).

How can Mallory bypass this defense?
@ By encrypting the Referer header so the server cannot read it.
By spoofing the IP address to look like it came from the server.

© By configuring her website (e.g., using <meta name="referrer" content="no-
referrer">) to tell the browser not to send a Referer header.

®) It is impossible to bypass; browsers always send the Referer header.

Q10.6 (2 points) Alice wants to implement a strong defense against XSS that restricts where scripts can
be loaded from. She configures her server to send a specific HTTP header that tells the browser:
“Only load scripts from https://mysite.com. Block all other scripts.”

What is the name of this defense?
@® Same-Origin Policy (SOP) © Cross-Site Request Forgery (CSRF) Token
Content Security Policy (CSP) (® Referer Validation

Q10.7 (2 points) The most robust defense against CSRF is the use of a CSRF Token (a random, secret value
included in forms).

Why does this prevent Mallory from successfully forging a request from evil.com?
® The token encrypts the session cookie so Mallory cannot use it.

Mallory cannot read the token from the legitimate site due to the Same-Origin Policy, so she
cannot include the correct token in her forged request.

© The token verifies that the IP address of the request matches the IP address of the user.

® The token prevents the browser from sending cookies to the server.

Final Page 17 of 20 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q11 Memory Safety: Jonah Dreams of Sheep -

Consider the following vulnerable C code:

void sleep() {
char dream[24];
fread(dream, 24, 1, stdin);
count_sheep(dream) ;

}

void count_sheep(char* input) {
size_t num_sheep;
fread(&num_sheep, sizeof(size_t), 1, stdin);

© 00 N O O W N -

o
= O

if (num_sheep > 64) {
exit(1);

}

printf (input);

o o
a b W N

¥

Assumptions:

« All memory safety defenses are disabled.

« There is a copy of SHELLCODE at address Oxdeadbeef.
« There is no compiler padding.

o RIP of sleep is located at address Oxf££fd634.

Q11.1 (0.5 points) What goes in blank (1) in the stack diagram above?

@ dream input © num_sheep (® RIP of sleep

Q11.2 (0.5 points) What goes in blank (2) in the stack diagram above?

@ dream input © num_sheep (® RIP of sleep

Q11.3 (0.5 points) What goes in blank (3) in the stack diagram above?

@ dream input © num_sheep (® RIP of sleep

(12 points)

Stack at Line 9

RIP of sleep

(1)

@)

®)

RIP of count_sheep

SFP of count_sheep

num_sheep

® SFP of sleep

® SFP of sleep

® SFP of sleep

Q11.4 (1.5 points) Which of the following memory safety vulnerabilities are present in the above code?

Stack Buffer Overflow Off-by-one
Heap Buffer Overflow [D] Format String Vulnerability

Final (Question 11 continues...) Page 18 of 20

This content is protected and may not be shared, uploaded, or distributed.

® None of the above

CS 161 — Fall 2025

(Question 11 continued...)

Warning: Q11.5 and Q11.6 are very hard. Consider attempting all other questions before
spending too much time on these two parts.

Q11.5 (5 points) Provide an input to the fread call on Line 3 that will help us execute SHELLCODE.
If a part of the input can be any non-zero value, use 'A' * n to represent n bytes of garbage.

For the purposes of this question, the %*u specifier reads one argument from the stack (call it m),
treats it as an integer, and prints m bytes. It then proceeds to read a second argument off the stack,
but does nothing with it.

Hint: When processed by printf, %hhn writes one byte to the address given by the corresponding
argument; the value written is the number of characters printed so far.

] U '%*U.' + (!%Cl *) +

+ + ('A' *)

11.6 (2 points) Provide an input to the fread call on Line 9 that, together with your answer to the
p p g y
previous part, will execute SHELLCODE.

If a part of the input can be any non-zero value, use 'A' * n to represent n bytes of garbage.

Q11.7 (1 point) Which memory safety defenses would cause the correct exploit (without modifications)
to fail? Consider each choice independently.

ASLR Non-Executable Pages © None of the above

Q11.8 (1 point) Would the same exploit work if the call to fread on line 3 was replaced with fgets (with
the same parameters)?

@ Yes, because we can still write in the correct exploit input into dream.

Yes, because fgets does the same thing as fread when given the same number of bytes
to read.

© No, because fgets will overwrite the last byte of the SFP of sleep with a null terminator.

® No, because the amount of space in dream required to perform the exploit will no longer be
sufficient.

Final (Question 11 continues...) Page 19 of 20 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 11 continued...)

Post-Exam Activity: The Meaning of it All.

EvanBot, in search of a greater truth that has eluded them for far too long, has fallen deep into their
own mind, seemingly trapped indefinitely in their pensive state. Help EvanBot escape by answering life’s
great mystery:

Select your favorite topic from the cryptography portion of the course.

® Diffie-Hellman ® El Gamal
Encrypt-then-MAC (® MAC-then-Encrypt (You wouldn’t dare)
© PRNGs ® None of the above

Showcase how this topic illuminates the meaning of life (you may use words, math, drawings, etc.):

Comment Box

Congratulations for making it to the end of the exam! Feel free to leave any final thoughts, comments,
feedback, or doodles here:

Final Page 20 of 20 CS 161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

	Honor Code 📜
	Potpourri 🍲
	Memory Safety: Tomayto 🍅
	Memory Safety: I've played these games before… 🍅
	Cryptography: Secret Santa 🎅
	Cryptography: Double Dipping 🍯
	Networking: The Fate of Streamify 🎶
	Web Security: Super Query League ⚽
	Network Security: Caffè Strada ☕
	Web Security: Criss Cross Apple Sauce 🍏
	Memory Safety: Jonah Dreams of Sheep 🐑
	Post-Exam Activity: The Meaning of it All.
	Comment Box

