(5161
Fall 2025

Introduction to

Computer Decurity

Midterm

Name:

Student ID:

This exam is 110 minutes long. There are 8
questions of varying credit. (100 points total)

Question:| 1 [2|3 [4]5|6] 7|8 |Total

Points: 0 [15(18|13|13|12]19]|10] 100

For questions with circular bubbles, you may
select only one choice.

O Unselected option (Completely unfilled)
@ Don’t do this (it will be graded as incorrect)
@ Only one selected option (completely filled)

For questions with square checkboxes, you may
select one or more choices.

B You can select
B multiple squares (completely filled).
[V] (Don’t do this)

Anything you write outside the answer boxes or
you eress—eut will not be graded. If you write
multiple answers, your answer is ambiguous, or the
bubble/checkbox is not entirely filled in, we may
grade the worst interpretation.

Pre-Exam Activity: Crossword (0 points):

‘hlela

-
H|ch BR[O

1l
‘elvlaln|blo
f S
e hi |b
n b u
S r f
e o f
Wl |e
‘wlalg|n|e|r
ACROSS: DOWN:
1. What goes up 2. Don’t forget to format
5. Cutest mascot 3. ___in depth

7. Professor 4. Tastiest one-way function

6. Always overflowing

Ql Honor Code =

(0 points)

I understand that I may not collaborate with anyone else on this exam, or cheat in any
way. I am aware of the Berkeley Campus Code of Student Conduct and acknowledge that
academic misconduct will be reported to the Center for Student Conduct and may further
result in, at minimum, negative points on the exam.

Read the honor code above and sign your name:

Page 1 of 19

This content is protected and may not be shared, uploaded, or distributed.

Q2 Potpourri (15 points)

Q2.1 (1 point) TRUE oRr FALSE: The Trusted Computing Base (TCB) is another term for the data that we’re
trying to protect from an attack.

O True @ FaLse

Solution: The trusted computing base (TCB) is that portion of the system that must operate
correctly in order for the security goals of the system to be assured. This is the foundation of
trust, not the target of protection.

Q2.2 (1 point) A web app lets logged-in users access files by specifying a filename in the URL, but it does
not restrict access, so any user can view all other users’ files. Which security principle is violated?

QO Shannon’s Maxim

QO Fail-safe defaults

QO Detect if you can’t prevent
@ Ensure complete mediation

O None of the above

Solution: The security principle of Ensure complete mediation is violated because the web
app fails to check for authorization on every access to a file, allowing logged-in users to view
files they don’t own.

We also accepted Shannon’s Maxim. The course staff debated whether to accept this answer, and
we ultimately decided to accept it because someone who knows how the web app is structured
would know that they can access any file.

We did not accept “None of the above”. While there could be an argument for least privilege in
addition to “Ensure complete mediation” and/or “Shannon’s Maxim”, we thought those two were

applicable enough that we weren’t willing to accept “None of the above”.

Q2.3 (1 point) TRUE or FALSE: When storing a word OxDEADBEEF in memory on a big-endian system,
the bytes at increasing addresses are \xEF, \xBE, \xAD, \xDE.

O True @ FaLse

Solution: In a big-endian system, the most significant byte is stored at the lowest memory
address.

Midterm (Question 2 continues...) Page 2 of 19 CS161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued...)

Q2.4 (1 point) Which of the following registers stores the address of the top of the current stack frame?

O eax QO eip
@ <bp O None of the above

Solution: The ebp (Base Pointer) register stores the base address of the current function’s stack
frame, acting as a stable reference point for accessing local variables and arguments.

Q2.5 (1 point) TRUE OR FALSE: gets is a memory-safe function because it will always automatically
append a null terminator at the end.

O True @ FaLse

Solution: gets has no bounds checking, making it memory unsafe and susceptible to overflow.

Q2.6 (1 point) TRUE oR FALSE: Buffer overflows cannot be exploited if stack canaries are in use, because
then the return address cannot be overwritten.

O True @ FaLsE

Solution: Some buffer overflows can be exploited (e.g., an overflow of a heap buffer,
a format string vulnerability). Even for an overflow of a stack-allocated buffer, the return
address can still be overwritten; it might be detected, but it can still be overwritten.

2.7 (3 points) An attacker is exploiting a buffer overflow in a program with ASLR and non-executable
P P g prog
pages enabled. Which of the following attacks is most feasible?

O Inject shellcode onto the stack and jump to it.

@ Find some other vulnerability that reveals the address of a 1ibc function, then overwrite the
return address with the 1ibc function address (return-to-libc).

O Overwrite the address of the saved frame pointer (SFP) on the stack.

QO Overwrite the least significant byte of the saved frame pointer (SFP) on the stack with a null
byte, so when the current function returns, the caller uses a fake stack frame and jumps to
shellcode stored in the fake RIP (off-by-one).

Solution:

+ Non-executable pages enabled prevents execution of injected shellcode, so option 1 is blocked.

« ASLR randomizes the location of the stack, so it’s hard for an attacker to know what address
to write over the SFP, so option 3 won’t work.

« ASLR randomizes the location of the code segment, so it’s hard for an attacker to know what
address to put in the fake RIP, so option 4 is hard to make work. The attacker has to hope that
there is already a pointer/address stored somewhere on the stack, that points to malicious code
that when executed has a harmful effect. That’s unlikely to arise in most scenarios, so option

4 is typically not an option.

Midterm (Question 2 continues...) Page 3 of 19 CS161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued...)

Q2.8 (1 point) TRUE OR FALSE: In hybrid encryption, the public key is used to encrypt the message, and
the symmetric key is used only to sign.

O True @ FaLse

Solution: In hybrid encryption, the public key encrypts a randomly chosen symmetric session
key, and the session key encrypts the bulk message data. Signing is a separate operation and is
not the purpose of the symmetric key.

Q2.9 (1 point) TRUE oR FALSE: A major drawback of a Trusted Directory is that it is not scalable.

@ True QO FaLse

Solution: This is explained in Lecture 12 slide 10. Trusted directories suffer from a scaling issue

since no server can handle the amount of data required to serve information to the entire internet.
We resolve this by using a hierarchical system that allows most of the traffic to be distributed to

the servers that actually share the content.

Q2.10 (4 points) Suppose Alice and Bob share a secret key K used with a secure MAC algorithm. Alice
sends (M, T), where T = MAC(K, M), and a man-in-the-middle attacker intercepts it.

The attacker wants to replace Alice’s message with (M || 1,7"), with T” chosen so that Bob will
accept this modified message as valid. Is it feasible for an attacker to do this, without knowing the
key K?

O Yes, because the attacker knows M and anyone can compute the hash of M || 1
QO Yes, because MACs provide confidentiality, not integrity

QO Yes, because MACs are deterministic

@ No, because MACs are unforgeable

O No, because MACs are collision resistant

O No, because MACs are deterministic

O None of the above

Solution: The key property of a secure MAC is that, without the secret key, it should be compu-
tationally infeasible for an attacker to create a valid tag on a new message, even one closely

related to a known authenticated message.

Midterm Page 4 of 19 CS161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

https://docs.google.com/presentation/d/1EfeZlISb1wPknplE_2I2_gdsBEJzck67QvGQaNeZLDo/edit?slide=id.gf4d7a36182_0_59#slide=id.gf4d7a36182_0_59

o O W

Q3 Memory Safety: Betelgeuse (18 points)

For each C code snippet below, answer the two subsequent questions regarding the vulnerability present
and the best way to mitigate it.

void get_user_greeting() {
char user_name[32];
printf ("Please enter your name:\n");
gets(user_name) ;
printf("Hello, %s!\n", user_name);
}

Q3.1 (2 points) Which of the following memory safety vulnerabilities are present in the code snippet
above? Select all that apply.

B Stack Smashing / Buffer Overflow [] Format String Vulnerability
[] Integer Conversion Vulnerability [] Time-of-Check/Time-of-Use
[] Off-by-One Vulnerability O None of the above

Solution:

» Replace gets(user_name) ; with fgets(user_name, 32, stdin);: This code-level fix
prevents the overflow by limiting the input to the buffer’s size.

» Enable Stack Canaries: This compiler-level mitigation detects the overflow by placing a
sacrificial value (canary) on the stack, which, if overwritten, causes the program to abort.

Q3.2 (4 points) Which of the following changes would effectively mitigate the vulnerabilities identified
in the previous subpart? Select all that apply.

B Replace gets(user_name) ; with fgets(user_name, 32, stdin);.

[] Insert if (strlen(user_name) >= 32) return; after line 4 and before line 5.
B Enable Stack Canaries.

J Replace char user_name[32]; with char username[16] ;.

O None of the above

Solution:

» Replace gets(user_name) ; with fgets(user_name, 32, stdin);: This code-level fix
prevents the overflow by limiting the input to the buffer’s size.

- Enable Stack Canaries: This compiler-level mitigation detects the overflow by placing a

sacrificial value (canary) on the stack, which, if overwritten, causes the program to abort.

Midterm (Question 3 continues...) Page 5 of 19 CS161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

DO WN -

(Question 3 continued...)

void log_status(char *status) {
char msg[24];
fread(msg, 1, 24, stdin);
printf (status);
printf (msg) ;

}

Q3.3 (2 points) Which of the following memory safety vulnerabilities are present in the code snippet
above? Select all that apply.

[] Stack Smashing / Buffer Overflow B Format String Vulnerability
[] Integer Conversion Vulnerability [] off-by-One Vulnerability
[] Time-of-Check/Time-of-Use O None of the above

Solution: This is a Format String Vulnerability. Passing user-controlled data (status and
msg) as the first argument to printf allows an attacker to use format specifiers (like %x or %n)
to read from or write to memory.

Q3.4 (4 points) Which of the following changes would effectively mitigate the vulnerabilities identified
in the previous subpart? Select all that apply.

[] Replace fread (msg, 1, 24, stdin) with fgets(msg, 24, stdin).

B Replace printf (status) with printf ("%s", status) and replace printf (msg) with
printf("%s", msg).

[] Allocate status and msg on the heap instead of the stack.
[] Enable Address Space Layout Randomization.
O None of the above

Solution: The correct fix is to replace printf (status) with printf("%s", status) and
replace printf (msg) with printf ("%s", msg). This provides a static format string ("%s") and
treats the user data as a simple string to be printed, not as format commands to be interpreted.

Midterm (Question 3 continues...) Page 6 of 19 CS161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

© 00 N O O WN -

(Question 3 continued...)

void process_message(char *msg, int len) {
char buffer[128];

if (len > 128) {
printf ("Error: Message length exceeds buffer size.\n");
return;

}

memcpy (buffer, msg, len);

Q3.5 (2 points) Which of the following memory safety vulnerabilities are present in the code snippet
above? Select all that apply.

B Stack Smashing / Buffer Overflow [] Heap Overflow
B Signed/Unsigned Integer Vulnerability [] Time-of-check/Time-of-Use
[] Format String Vulnerability QO None of the above

Solution: This code has a Signed/Unsigned Integer Vulnerability leading to a Stack Smashing /
Buffer Overflow.

A negative int for len will pass the len > 128 check. When this negative len is passed to
memcpy, it’s converted to a very large unsigned size_t, causing memcpy to copy far more than
128 bytes and overflow the stack buffer.

Q3.6 (4 points) Which of the following changes would effectively mitigate the vulnerabilities identified
in the previous subpart? Select all that apply.

[] Use strncpy(buffer, msg, len); instead of memcpy(buffer, msg, len);
B Add a check to ensure len is not negative before the size comparison.
B Replace int len with size_t len

O None of the above

Solution:

+ Add a check to ensure len is not negative before the size comparison: Explicitly checking if
(len < 0 or len > 128) prevents the negative value from reaching memcpy.

» Replace intlen with size_t len: This is a more robust fix, as size_t is unsigned, making

a negative length impossible. The check if (len > 128) is then sufficient.

Midterm Page 7 of 19 CS161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q4 Cryptography: One Question After Another (13 points)

Q4.1 (3 points) Is a deterministic encryption scheme (where the same plaintext always produces the same
ciphertext for a given key) considered IND-CPA secure?

O Yes, because IND-CPA security is guaranteed as long as the underlying block cipher is a one-
way function.

O Yes, because the security relies on the secrecy of the key, not on randomizing the ciphertext
output.

@ No, because an attacker can detect if the same message is sent twice and thereby win the IND-
CPA game.

O No, because determinism makes the scheme vulnerable to brute-force attacks on the key
space.

Solution: IND-CPA security requires that an attacker can’t distinguish between the encryptions
of two messages they choose, m(and m;. If the scheme is deterministic, an attacker can submit
m and m; to the challenger to get back a challenge ciphertext C,. The attacker then simply asks
their own encryption oracle to encrypt m,, which deterministically produces Cy,. If C, = C, the

attacker knows the message was m,, winning the game with 100% certainty.

Q4.2 (3 points) In a message encrypted with CBC mode, ciphertext block Cjy is corrupted, but C; and C,
are received intact. Will the corresponding plaintext block P, be decrypted correctly?

@ VYes, because the decryption of P, does not depend on the corrupted Cs.
O Yes, because P, is only dependent on C, and the original IV.

QO No, because the “chaining” in CBC mode means an error in one block corrupts all subsequent
plaintext blocks.

O No, because decrypting P, requires a correctly decrypted P, which is impossible since C
was corrupted.

Solution: In CBC mode, the decryption formula for a plaintext block P, is P, = D,,(C;) & C;_;.

+ To decrypt P,, the receiver computes P, = D, (C;) @ Cg. Since both C; and Cy; were received
intact, P is decrypted correctly.

+ The corrupted Cj only affects the decryption of B, (which uses D, (C;)) and Fy (which uses
Cs for the XOR).

Midterm (Question 4 continues...) Page 8 of 19 CS161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 4 continued...)

Q4.3 (4 points) Alice attempts to provide message integrity by sending a message M concatenated with
its hash, as M| H (M), where H is a secure cryptographic hash function. Does this scheme protect
against an active adversary who can modify the message in transit?

QO Yes, because the one-way property of the hash prevents an attacker from creating a new
message M’ that hashes to the same value as the original hash H(M).

QO Yes, because Bob’s verification step, where he re-computes the hash of the received M, would
detect any tampering.

O No, because this scheme fails to provide confidentiality, and integrity is not possible without it.

@ No, because the hash is unkeyed, allowing an attacker to modify the message and simply
recompute a valid hash for the new message.

Solution: An active adversary can intercept the message M| H (M), create a new malicious
message M’, compute the new hash H(M’) (since the hash function H is public), and send
M'|H(M’) to the recipient. The recipient’s check will pass, as the hash H(M’) correctly
matches the malicious message M. This scheme lacks authentication; a Message Authentica-

tion Code (MAC), which uses a shared secret key, is required for integrity.

Q4.4 (3 points) Alice and Bob use the Diffie-Hellman key exchange to derive a shared secret g*°. After
each session, they erase both their private exponents (a, b) and the derived value g% before starting
a new one. Does this provide forward secrecy if an attacker later learns the values of g, a and b?

QO Yes, because forward secrecy concerns the ability to predict future session keys after the
compromise, not before.

@ Yes, because a compromise of future secrets would not reveal past session keys, as they were
derived from discarded ephemeral secrets.

O No, because the attacker can perform a man-in-the-middle attack during the initial exchange,
which retroactively breaks forward secrecy.

O No, because if the public parameters g and p are ever revealed, all past sessions become
insecure.

Solution: This scenario describes Ephemeral Diffie-Hellman. The core principle of forward
secrecy is that the compromise of secrets today (e.g., a future session’s keys) does not allow an
attacker to decrypt past communication. Since the private exponents a and b (and the resulting
shared secret) are securely erased after each session, an attacker who compromises the system

later and learns new exponents a” and b” has no way to recover the old, discarded keys.

Midterm Page 9 of 19 CS161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q5 Cryptography: Slack DMs (13 points)

Alice wishes to send Bob a message m over an insecure channel, and is deliberating over what scheme

F(m) to employ. A secure scheme should provide:

+ Confidentiality. From the value F'(m) alone, no adversary should be able to efficiently recover the
value of message m. Assume that dictionary attacks on m are not possible (there are too many possible
values of m for the attacker to enumerate all of them).

« Integrity. It should be computationally infeasible to find two distinct messages m # m’ such that
F(m) = F(m') (a collision).

For each scheme F'(m) below, determine whether it provides confidentiality, integrity, both, or
denotes concatenation, and H denotes a secure cryptographic hash function.

neither. In all questions,

Q5.1 (4 points) Alice sends:

O Confidentiality only QO Integrity only O Neither @ Both

Solution:

+ Confidentiality: A secure cryptographic hash function H is preimage resistant (one-way). This
means given the output H(m), it is computationally infeasible to find the original input m.
This directly matches the definition of confidentiality provided.

« Integrity: A secure cryptographic hash function H is collision resistant. This means it is
computationally infeasible to find two distinct messages m # m’ such that H(m) = H(m').

This directly matches the definition of integrity provided.

Q5.2 (3 points) Let p be a publicly known, large prime number. Alice sends:
F(m) =1"modp

@ Confidentiality only QO Integrity only O Neither QO Both

Solution:

« Confidentiality: For any value of m, F(m) = 1 mod p. On top of that, because of the discrete
log problem, it is computationally infeasible to find the value of m

+ Because of this same reasoning, we can easily find m # m’ such that F(m) = F(m') as

1™ modp = 1™ mod p = 1 mod p.

Midterm (Question 5 continues...) Page 10 of 19 CS161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 5 continued...)

For the next two subparts, Alice wishes to send a two-part message composed of m, and m, where
mg 7 my. For each scheme F'(m) below, determine whether it provides integrity.

Note:

+ len(my | my) returns the length of m | m;,

o @ denotes the XOR function,

+ (mgy, my) = (my, m7) is true if and only if both m; = m({ and m; = mj.

Q5.3 (3 points) Alice sends:
F(my) = H(myg | my | len(mg | my))

Does this scheme provide integrity?
In other words: Is it computationally infeasible to find two distinct pairs (mg, m,) # (mg, m}) such
that F'(mq | my | len(myg | my)) = F(mg | my | len(mg | my)).

O Yes @ No

Solution: No this not provide integrity. If m = (mg, m;) = (Hello, World),
then we can set m” = (m(, m}) = (HelloW, orld), such that F'(m) = F(m')

Q5.4 (3 points) Alice sends:
F(m) = H(my & m,)

Does this scheme provide integrity?
In other words: Is it computationally infeasible to find two distinct pairs (mg, m,) # (m(, m]) such
that F'(mg @ my) = F(m{ & m}).

O Yes ® No

Solution: No this not provide integrity. If m = (m, m,) then we can set m;, = m; and mj =
my, leaving us with m’ = (m,, m,) such that F'(m) = F(m')

Midterm Page 11 of 19 CS161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q6 Cryptography: Is This Random? (12 points)

A pseudorandom number generator (PRNG) uses an initial seed of truly random bits to generate a long
sequence of outputs. The seed serves as the starting point, or initial state, denoted s,. From any given
state s;, the PRNG produces an output r,, ; and computes the next internal state s;_ ;.

A secure PRNG should have the following properties:

» Deterministic — Given the same seed, a PRNG must always produce the same sequence of outputs. This
ensures reproducibility (anyone who knows the seed and algorithm can regenerate the exact sequence).

» Pseudorandom - The output sequence is computationally indistinguishable from true randomness for
any efficient adversary who does not know the seed or internal state, i.e., an adversary cannot tell the
difference between output from the PRNG vs truly random bits. In practice, this means past outputs
should not help an attacker predict the next output.

» Rollback Resistant — Even if an attacker learns the current internal state, they cannot reconstruct
earlier outputs or states.

For each of the three functions below, select all the properties that the function satisfies. If a function has
none of these properties, select “None of the above.” H denotes SHA256 (which is a secure cryptographic
hash function).

Q6.1 (4 points) Select all of the characteristics that this PRNG satisfies:
rip1 =H(s; [0), s =H(s; | 1)

Il Deterministic B Pscudorandom B Rollback Resistant O None of the above

Solution:

+ Deterministic: With the same seed, each step computes the same pair since both 7, ; and
;41 are H(s;).

+ Pseudorandom: For a cryptographic H, H(s;) is computationally indistinguishable from
random to anyone who doesn’t know the internal state.

+ Rollback Resistant: From s, ; = H(s;) (and r;_), computing s; would require inverting H
(preimage), which is infeasible.

Q6.2 (4 points) Select all of the characteristics that this PRNG satisfies:
rign =H(@), s =i+1

Il Deterministic [] Pseudorandom] Rollback Resistant O None of the above

Solution:

+ Deterministic: The index i evolves deterministically and always yields the same r; ; = H (%)
and s, ; =1+ 1.

+ Not Pseudorandom: The sequence is predictable: it’s just H(0), H(1), H(2), ..., so an adver-
sary can reproduce/verify outputs without any secret.

+ Not Rollback Resistant: Knowing the current state s, = ¢ lets an adversary recompute all

prior outputs 7; = H (j) for j < 4; past output is not protected.

Midterm (Question 6 continues...) Page 12 of 19 CS161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 6 continued...)

Q6.3 (4 points) Select all of the characteristics that this PRNG satisfies:
riv1 = H(s;), 830 =H(riq)

Il Deterministic [] Pseudorandom B Rollback Resistant O None of the above

Solution:

+ Deterministic: With the same seed, H is deterministic, so the (7,1, s,,1) sequence repeats
exactly.

+ Not Pseudorandom: An adversary who observes r; ; can compute s; ; and then compute
T; 42 (since the hash function is public and anyone can compute it), so an attacker who observes
one output can predict all future outputs.

+ Rollback Resistant: Since s, ; = H(H(s;)) is a one-way mapping in s;, recovering s; from

5;,1 is computationally infeasible.

Midterm Page 13 of 19 CS161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

© 0 N O O b W N -

=
= O

Q7 Memory Safety: EvanBond, Double-O \x90

Consider the following vulnerable C code:

(19 points)

Stack at Line 2

void q(int spectre) {
char goldfinger([8];

for (int i = 0; i < 8; i++) {
goldfinger[i] = 0x90;

void m() {
q(007);
}

fread(goldfinger, 13, 1, stdin);

RIP of m

(1)

(2)

©)

SFP of q

Assumptions:
« All memory safety defenses are disabled.

+ You run GDB and break before executing line 3. You find that the RIP of q has the value Oxf£££d6cO0.

+ You also find that goldfinger is located at address Oxf£££d620.
« Recall that the byte 0x90 is also known as the NOP (no-operation) instruction.

 Your goal is to execute the 4-byte-long SHELLCODE.

(4)

Q7.1 (2 points) What values go in blanks (1) through (4) in the stack diagram above?

O (1) SFP of m (2) RIP of q
@ (1) SFP ofm (2) spectre
O (1)RIP of q (2) spectre
O (1) RIPof q (2) goldfinger

(3) spectre
(3) RIP of q
(3) SFP of m

(3) spectre

(4) goldfinger
(4) goldfinger
(4) goldfinger
(4) SFP of m

Solution: The stack diagram:

O0xfff£fd638 [[4] RIPofm
0xfff£d634 | [4] SFP of m
Oxf£f£f£d630 | [4] spectre
Oxffffd62c | [4] RIP of q
Oxfff£d628 | [4] SFP of q
Oxffffd620 [[8] goldfinger

Midterm (Question 7 continues...)

This content is protected and may not be shared, uploaded, or distributed.

Page 14 of 19

CS161 — Fall 2025

(Question 7 continued...)

Q7.2 (4 points) Which of these values does the exploit have to overwrite to execute SHELLCODE? Select

all that apply.
B goldfinger [] SFP of m
B Least significant byte of the RIP of q [] spectre
Il SFP of q O None of the above

Q7.3 (4 points) Provide an input to the fread on Line 3.

If a part of the input can be any non-zero value, use 'A' * n to represent n bytes of garbage.

'A' * 8 + SHELLCODE + '\x20'

Solution: fread gives us 13 bytes to write, with which we will need to:

« overwrite goldfinger with 8 bytes of grab to reach the SFP of q

« Then we place our 4-byte SHELLCODE

« Finally we overwrite the LSB of the RIP of q so that we can point it somewhere into goldfinger or
directly to the SHELLCODE. Any byte choice between \'x20' and \'x28' would have the RIP of q
pointing either into goldfinger (which recall is a no-op sled thanks to the for loop beginning on
line 4) or directly at SHELLCODE, which was placed at the address of the SFP of q (0Oxf£££d628).

We cannot place SHELLCODE into goldfinger, as that same for loop would corrupt the bytes of
SHELLCODE, leaving us with no choice but to place it right above goldfinger.

Q7.4 (2 points) Which memory safety defenses would cause the correct exploit from Q7.3 (without
modifications) to fail? Consider each choice independently.

B Stack canaries O None of the above

B Non-executable pages

Solution: Stack canaries would foil this exploit in two ways:

1. They would add 4 bytes onto the stack in between goldfinger and the SFP of q, meaning that we
can no longer fully overwrite the SFP or overwrite the LSB of the RIP.

2. The intended exploit would also overwrite the value of the canary, causing the program to abort

Seeing as we are writing our exploit onto the stack, setting the stack to non-executable (through non-
executable pages) would also result in us being unable to execute the instructions of SHELLCODE.

Midterm (Question 7 continues...) Page 15 of 19 CS161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 7 continued...)

Q7.5 (3 points) Which values of the RIP of q would cause the correct exploit from Q7.3 (without
modifications) to fail? Select all that apply.

[] ox££££d640 [] 0x££££d610 Il 0xfff£dbdo
[] 0xf£££d630 [] 0xf£££d600 Il 0xffffdbco
[J] oxffffd620 B 0xffffdbel O None of the above

Solution: Seeing as we can only overwrite the LSB of the RIP of q, we need the three most-sig-
nificant bytes of the value the RIP to match the address of goldfinger (which is Oxff££d620).
Thus any value of the RIP of q which is not in the form Oxff£f£fd6__ would cause the program
to fail.

Q7.6 (4 points) When does the correct exploit from Q7.3 start executing instructions in SHELLCODE?
(O When the function fread on line 3 returns
O When the for loop on line 4 completes
@ When the function q on line 1 returns

O When the function m on line 8 returns

Solution: The exploit works by overflowing goldfinger to overwrite RIP of q on the stack.
This corrupted return address now points to the location of the goldfinger buffer (which the for
loop conveniently turns into a NOP sled) leading to the instructions of SHELLCODE (which was

placed just above goldfinger) to be executed.

Midterm Page 16 of 19 CS161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q8 Cryptography: The Mumbling-Jumbling Block Cipher (10 points)

EvanBot creates a new block cipher mode of operation. The encryption formula requires using two IVs:
G, = IV, and F) = IV;. Given a message M = (P,, B,, P;), the sender appends one more block P, = 0,
which is used for integrity checking, then encryption proceeds as shown below:

B B B 5
EEEEEEEEEE [T [T EEEEEENEEE

EEEEEEREEN ENNEREREEN EEERREREEN EENEEEREEN
G Gy Cs Cy

G,=P®F_, F, = Ex(Gy) C=F&G_,

In this entire question, assume that all IVs are independently randomly generated.

Q8.1 (3 points) What formulas should we use to decrypt the ciphertexts?

Oﬂzq_l@Gl_l Gz:DK(F:L) B:G1®E+1
OF%:C’H_l@Gi_l Gi:DK(F%—H) Pi:Gi‘f‘leBF;:
®:r_Coc., G, = Dy (F) B-GoF,

Solution: Algebraically reverse the encryption formulas provided above to solve for P..
Deriving Decryption:

1. Given that C; = F; @ G;_,, isolate F; toget F, = C; & G;_;.

2. Given that F; = Ey(G;), decrypt F, = G; = Dy (F,)

3. Finally, given that G; = F, @ F,_,,isolate F, = F, = G, ® F;_,

These three derived formulas exactly match option C.

Midterm (Question 8 continues...) Page 17 of 19 CS161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 8 continued...)

Q8.2 (3 points) Is this scheme IND-CPA-secure?
@ Yes, no attacker can win the IND-CPA game with a probability greater than %
O Yes, because no attacker can forge the ciphertexts without being detected.
QO No, the last block of the plaintext, P,, allows for attackers to distinguish between M, and M,.

QO No, because the IVs are non-deterministic.

Solution: IND-CPA does not guarantee integrity/authenticity. IVs need to be random and non-
deterministic for a scheme to be IND-CPA secure. The IND-CPA game allows for the attacker to
choose the two messages and guarantees that for any two known messages, the ciphertexts are

indistinguishable.

When receiving a ciphertext, the recipient decrypts it (using the correct method from Q8.1), then verifies
integrity by checking that P, = 0. If P, # 0, the recipient ignores the ciphertext (i.e. it is invalid).
Otherwise, the recipient accepts the decrypted message.

Q8.3 (4 points) Does this scheme provide authenticity?
QO Yes, this is exactly Encrypt-then-MAC with CBC mode as the encryption scheme.

QO Yes, an attacker who observes the encryption of either M, or M, cannot guess which was
encrypted.

O No, because an attacker can always recover the secret key k from a ciphertext and reconstruct
a new ciphertext that way.

@ No, if a message has a 0 block, an attacker could truncate the ciphertext after that without
being detected.

O No, if Alice encrypts M = (P,) with P, = 0 and the attacker observes the corresponding
ciphertext C = (C}, C;), then sending the ciphertext C’' = (C,, Gy, C;, C,) will decrypt to
the message M’ = (0,0, 0) and the recipient will accept the decrypted message.

Solution: Suppose Alice encrypts the message M = (P,, B, P;) such that P, happens to be
zero. The mode of operation will append P, = 0, and encrypt to get the ciphertext C' =
(Cy, Cy, G5, Cy) with IVs, F) and G,.

Now, suppose that Mallory observes this ciphertext and truncates it to get the truncated cipher-
text C’ = (C}, Cy) with IVs, Fj and G,

When Bob receives C” and decrypts it, he will obtain P/ = P, and P; = P, = 0. Then, Bob will
check that the last block of P is equal to zero...which it is. Therefore, Bob will accept this as a
valid decryption, and receive the message M’ = (P)).

In other words, Bob will think that Alice sent M’ = (P,) when that’s not actually what Alice sent.

Midterm (Question 8 continues...) Page 18 of 19 CS161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 8 continued...)

Post-Exam Activity: The Bot and the Maze

Help Evanbot get through the maze!

1[I AN NS

T 1

Comment Box

Congratulations for making it to the end of the exam! Feel free to leave any final thoughts, comments,

feedback, or doodles here:

Midterm Page 19 of 19 CS161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

	Honor Code 📜
	Potpourri
	Memory Safety: Betelgeuse
	Cryptography: One Question After Another
	Cryptography: Slack DMs
	Cryptography: Is This Random?
	Memory Safety: EvanBond, Double-O \x90
	Cryptography: The Mumbling-Jumbling Block Cipher
	Post-Exam Activity: The Bot and the Maze
	Comment Box

