
Raluca Ada Popa
Spring 2018

CS 161
Computer Security Final Exam

Solutions updated May 2021 by CS161 SP21 course staff.

Print your name: ,
(last) (first)

I am aware of the Berkeley Campus Code of Student Conduct and acknowledge that academic misconduct
will be reported to the Center for Student Conduct and may further result in partial or complete loss of credit.

Sign your name:

Print your SID:

Name of the person
sitting to your left:

Name of the person
sitting to your right:

You may consult three double-sided, handwritten sheet of paper of notes. You may not consult other notes
or textbooks. Calculators, computers, and other electronic devices are not permitted.

Bubble every item completely. Avoid using checkmarks or Xs.
If you want to unselect an option, erase it completely and clearly.

For questions with circular bubbles, you may select only one choice.

Unselected option (completely unfilled)

Only one selected option (completely filled)

For questions with square checkboxes, you may select one or more choices.

You can select

multiple squares (completely filled).

If you think a question is ambiguous, please come up to the front of the exam room to the TAs. If we agree
that the question is ambiguous we will announce the clarification to everyone.

You have 170 minutes. There are 12 questions of varying credit (221 points total).

Do not turn this page until your instructor tells you to do so.

Page 1 of 30

SID:

Problem 1 True or False (40 points)
Answer the following true or false questions.

(a) The Harvard Architecture separates the code and data of a program into two separate address
spaces. This makes it impossible to treat data as code, or code as data. True or False: Buffer
overflows are not exploitable on a Harvard Architecture.

True False

Solution:

False, as a buffer overflow could still overwrite local variables.

(b) True or False: Postconditions for a function are independent of implementation details of the
function.

True False

Solution:

True, the postcondition deals with the final result of the function, not about how the function
gets there.

(c) Consider the splitting problem: given a natural number n, find integers a and b such that ab = n
and a, b > 1. (Note that a and b need not be prime.) True or False: If we had a polynomial
time solution to the splitting problem, we could create a polynomial time solution for factoring into
prime numbers.

True False

Solution:

True, since we can factor a number by splitting it once, and then splitting a and b. (There is
some work associated to show that this is still polynomial time.)

(d) Consider the function H : {0, 1}2b → {0, 1}b. H takes a 2b-bit string s, and splits it into two b-bit
blocks k and x. It then computes Ek(x), where Ek is a secure block cipher encryption using b-bit
blocks and keys. True or False: H is a one-way function.

True False

Solution:

Let y be any arbitrary output. Then H(k′||Dk′(y)) = y for any k′.

(e) True or False: If an arbitrary function is collision-resistant, then it is preimage resistant.

True False

Final Exam Page 2 of 30 CS 161 – Spring 2018

SID:

Solution:

Consider the identity function. Then the function is collision-resistant (there are no two inputs
such that Id(x) = Id(y) with x 6= y), but it is clearly not preimage resistant (given y, its inverse
is simply y).

(f) True or False: If an arbitrary function is collision-resistant, then it is second preimage resistant.

True False

Solution:

Say that we had a function f was not second preimage resistant. Then for any x we can find
another preimage x 6= x′ with f(x) = f(x′). Therefore f is not collision-resistant.

(g) True or False: If it is possible, one way to prevent CSRF attacks is to use HTTP POST requests
instead of HTTP GET requests, since this prevents an attacker from creating a request using an
img tag.

True False

Solution: An attacker can still write Javascript to submit a POST request.

(h) True or False: If we do not use frames on our site, this prevents attackers from performing a
clickjacking attack.

True False

Solution: A clickjacking attack often involves when another site frames you.

(i) True or False: If you know the IP addresses, ports, TCP sequence numbers and TCP acknowl-
edgement numbers in a TCP connection, you can inject TCP traffic.

True False

Solution: TCP provides no authentication – this is all the information you need to spoof
messages from either side.

Final Exam Page 3 of 30 CS 161 – Spring 2018

SID:

(j) True or False: If we have two independent detectors, there is always a way to combine them such
that the combined detector is more cost-effective than either detector alone. (Ignore the cost of the
detectors.)

True False

Solution:

Intuitively: you don’t know which detector is right so you might not be able to combine them
to be more effective.

As a pathological counterexample: say we have a detector that always triggers and another
detector that never triggers. Say the cost of a false-positive is $100, and the cost of a false-
negative is $100. Furthermore say that the base-rate of attacks is 0. The detector that never
triggers is more cost-effective, since it costs $0. Any combination of it with the detector that
always triggers must be less cost-effective.

(k) True or False: HTTPS provides security even against attackers on the local network.

True False

Solution:

HTTPS provides end-to-end security.

(l) True or False: Even if you carefully inspect all URLs in the address bar to make sure they do
not contain Javascript, you can still fall victim to a reflected XSS attack.

True False

Solution:

Example: you click an innocent URL, which contains a iframe with the reflected XSS as the
source.

(m) True or False: Disabling Javascript in your browser prevents clickjacking attacks completely.

True False

Solution: There are CSS-based clickjacking attacks. Also, browser-in-browser still works.

(n) True or False: Disabling Javascript in your browser prevents CSRF attacks completely.

True False

Solution:

False, a CSRF attack can be performed by simply including the URL in the src tag of an image,
as shown in HW4.

(o) True or False: If we hash the MAC of a message, this provides confidentiality.

Final Exam Page 4 of 30 CS 161 – Spring 2018

SID:

True False

Solution:

False, as neither MACs nor hashes are designed for confidentiality. (As a simple example: both
are deterministic and so sending the same message twice leaks.)

(p) True or False: If we have a secure MAC, it is computationally difficult to find two keys k and k′,
and a message m such that MACk(m) = MACk′(m).

True False

Solution:

False, this is not a property that MACs aim to provide. In fact we can define a patholog-
ical MAC which does not have this property. For example, consider NEW-MAC0||k(m) =
NEW-MAC1||k = HMACk(m). Then this MAC is secure (in the unforgeability sense), but the
given statement is false.

(q) True or False: Prepared statements are a possible defense for SQL injection attacks.

True False

Solution: This is the main purpose of prepared statements (in addition to improved efficiency).

(r) True or False: DNSSEC and TLS combined prevents eavesdroppers from seeing what sites we
are visiting.

True False

Solution: False, DNSSEC does not provide confidentiality.

(s) True or False: ARP spoofing requires that the attacker has two devices on the network: one to
send requests and the other to give fake answers.

True False

Solution: False, they only need one to give fake answers.

(t) True or False: Whitelist approaches are often more effective than blacklists in preventing injection
attacks.

True False

Solution: Whitelisting is less error-prone.

Final Exam Page 5 of 30 CS 161 – Spring 2018

SID:

Problem 2 Party, No Theme (35 points)
Answer the following questions about various course topics.

(a) (6 points) You have discovered a vulnerability in Snapitterbook which lets you create malicious
posts. Whenever someone visits your Snapitterbook page, the evil post sends a request to the
Snapitterbook webserver which causes the visitor to post a copy of the evil post to their own wall.
Now their wall is also infected!

i. Which of the following concepts are relevant to this situation?

CSRF

Virus

Worm

Trojan

Reflected XSS

Clickjacking

SQL Injection

Stored XSS

Solution:

This is a worm (similar to the MySpace Sammy Worm) since it propogates by copying
itself to another target. It is also a stored XSS, as that is the exploit it uses to make evil
requests.

Note that this is not a CSRF: the origin is the same as the referring site.

ii. Which of the following technologies could help fix or detect the situation above?

A strict X-Frame-Options

Input escaping

A strict Content-Security-Policy

Prepared Statements

Anomaly-based detection

Referer checking

CSRF Tokens

HTTPS

Solution:

Input escaping is an easy fix: if inputs were escaped then XSS could not occur.

A strong CSP would prevent inline and foreign scripts, preventing XSS from executing.

Anomaly-based detection could help detect this problem through the large volume of posts,
or through the anomalous referers of HTTP requests to the post endpoint.

(b) (3 points) You are considering buying three detector solutions, with the following statistics:

1. Detector X: False positive rate 5%; False negative rate 2%

2. Detector Y: False positive rate 1%; False negative rate 5%

3. Detector Z: False positive rate 2%; False negative rate 1%

A false positive costs $50, while a false negative costs $100.

Answer the following questions which attempt to compare the cost effectiveness of each detector.
If the detectors are equally effective, either choice will be accepted.

i. Compare X and Y .

Final Exam Page 6 of 30 CS 161 – Spring 2018

SID:

X is better (or equal) Y is better (or equal) Cannot say

ii. Compare Y and Z.

Y is better (or equal) Z is better (or equal) Cannot say

iii. Compare X and Z.

X is better (or equal) Z is better (or equal) Cannot say

Solution:

This is the base rate fallacy: without knowing how often attacks occur, you cannot deter-
mine which detector is better. The exception is X vs. Z, since Z has a lower false positive
and false negative rate, it must be more effective.

(c) (3 points) What security principle explains why using proof of work to prevent email spam might
work?

Solution: Security is economics: a spammer who has to spend money (as proof of work) in
order to send spam is less incentivized to send spam.

(d) (3 points) A company decides to implement a complicated password policy for its employees. What
security principle explains why the overall security of the system might go down?

Solution: Consider human factors: people will often write their passwords on post-it notes if
they are too complicated.

(e) (3 points) For RSA signatures as discussed in lecture, why is verification faster than signing?

Solution: Verification requires raising to the 3rd power, can be done fast (O(1) multiplica-
tions). Signing requires raise to the d, which is bigger than 3 and therefore slower (O(log d) =
O(logN) multiplications).

(f) (5 points) Bob allegedly posted a rude statement about Alice on https://bob.com/alice-sux.
Alice decides to take Bob to court! As proof that the Bob’s site had the statement at some point
in time, Alice presents the entire HTTPS dialogue between her and the site. She also provides all
the keys derived through the process. Should the judge be convinced? Explain your answer in 2–3
sentences.

Ignore the possibility that an attacker has compromised bob.com or Bob’s private keys. Assume
bob.com uses RSA TLS and has a certificate signed by a trusted certificate authority.

Judge should be convinced Judge should not be convinced

Explain:

Solution:

After Alice and Bob agree on a PS, both sides derive the TLS symmetric keys Ib, Is, Cb, Cs.
This means that Alice can easily forge messages which appear to come from Bob.

(g) (3 points) Which of the following attacks require an attacker to be on the same local network as
their target?

Final Exam Page 7 of 30 CS 161 – Spring 2018

SID:

TCP Injection

ARP Spoofing

DNS Spoofing

DHCP Spoofing

Reflected XSS

Stored XSS

Solution:

Both ARP and DHCP spoofing require that the attacker is on the same local network, since
neither protocol actually leaves the local network.

(h) (3 points) Which property of the hash function does the hash chain in Bitcoin rely on? List one
property alone.

Solution: Collision resistance: must prevent attackers from creating two blocks with the same
hash.

(i) (3 points) Which of the following defenses are typically implemented using the compiler?

Position-Independent Executables

NX bit

ASLR

Stack Canaries

Solution:

PIE requires the compiler to output position-independent code which can execute in any loca-
tion in memory.

Stack canaries are added by the compiler: it emits code to check that the canary does not
change before leaving the function.

ASLR is implemented at the OS level, the NX bit is either implemented at the OS level or the
hardware level.

(j) (3 points) Alice receives the following email:

From: Mallory <mallory@rsa.com.evil.org>

To: Alice <alice@rsa.com>

Hey Alice,

Your boss, Steven, wanted me to send you this link to those expense

reports for the Fall 2016 Quarter. He said that you would look at

them and give Evelyn the tax estimate she asked for earlier.

<http://taxes.fall.2016.rsa.com.evil.org/login.html>

What attack does this represent? (Be as specific as possible!)

Solution: Spearphishing: the attack contains specific information about Alice, but the site
rsa.com.evil.org is trying to steal her login information. (Significant partial credit for phish-
ing or social engineering.)

Final Exam Page 8 of 30 CS 161 – Spring 2018

SID:

Problem 3 Déjà Vu (16 points)
The code below runs on a 32-bit Intel architecture. ASLR is enabled. There are no stack canaries, no
position-independent executables and no NX bit. No padding is added by the compiler.

1 char *gets(char *s) { /* simple implementation of gets */

2 char *s_ = s;

3 while ((*s_++ = getchar ()) != ’\n’);

4 s_[-1] = ’\0’;

5 return s;

6 }

7
8 void deja_vu () {

9 char door [16];

10 gets(door);

11 }

(a) What sort of exploit technique works by chaining execution of small blocks of code (“gadgets”)?

Solution: Return-oriented programming

(b) After disassembling the code, you find the following gadgets.

1 Gadget 1:

2 0x080484a2 <+30>: sub $0x14 ,%esp
3 0x080484a5 <+33>: ret

4 Gadget 2:

5 0x080484fc <+30>: add $0x14 ,%esp
6 0x080484ff <+33>: ret

Which of the above gadgets was most likely generated intentionally by the compiler?

Gadget 1 Gadget 2

Solution: Recall that the stack grows towards down towards lower memory addresses, so
decrementing the esp register is “extending” the stack while adding to the esp register is
“popping” from the stack.

Gadget 1 shows a 20 byte allocation on the stack (extending the stack down) directly before
returning from a function.

Gadget 2 shows a 20 byte deallocation from the stack (popping from the stack) directly before
returning from a function.

When we return from a function, we want to deallocate the memory of that frame, not add more
memory to the stack. Thus Gadget 2 seems more likely to have been generated intentionally
by the compiler.

(c) On some older Intel processors, a single instruction could halt the entire system. The machine code
for one such instruction is \xf0\x0f\xc7\xc8. Give an input which will cause the execution of this
shellcode. Hint: We pushed &door onto the stack in order to call gets. This forms a “perfect
pointer” for shellcode. Knowing that, how can you make the program start executing door?

Final Exam Page 9 of 30 CS 161 – Spring 2018

SID:

Solution:

Short solution:

Earlier, we pushed &door onto the stack for the call to gets. We juggle %esp so that it points
to &door right before a ret.

More detailed solution:

[4] rip of deja_vu

[4] sfp of deja_vu

[16] door

[4] char *s = &door

[4] rip of gets

[4] sfp of gets

[4] char * s_

The idea is to overwrite the 24 bytes comprising door, sfp, and rip. Since we have &door on
the stack, we need to get esp to point to that address and have call ret after that. This means
that the first 4 bytes of door must be the F00F instruction address.

Now note that we have the gadget that subtracts 20 bytes from esp and calls ret. However,
&door and rip of main are 24 bytes apart, so we will need to call this gadget twice. If we put the
address of the gadget in the top rip, that will get us to door + 4, which isn’t enough. However,
if we put another gadget here, that will get us to s , which is too far. Thus, we ret twice to get
to door + 12, and then we put the address of the gadget there again. Now, when the esp - 20
is performed, it points to &door, and the ret will execute the instruction at door.

Extremely detailed solution:

Start by drawing a stack diagram:

[4] rip of deja_vu

[4] sfp of deja_vu

[4] door4

[4] door3

[4] door2

[4] door1

[4] char *s = &door

[4] rip of gets

[4] sfp of gets

[4] char * s_

Note that we wrote the 16-byte buffer door as 4 labeled rows of 4 bytes each. This is just for
clarity in later parts of the exploit.

Note that the value below the door buffer, char *s = &door, is the argument to gets. (Recall
that arguments of a function are pushed onto the stack before that function’s rip and sfp.)

If ASLR wasn’t in use, we could simply start writing at door and overwrite the rip with the
address of our shellcode. However, because ASLR randomizes absolute addresses each time the
program is run, we won’t know what address to overwrite the rip with.

As the hint notes, &door on the stack is a perfect pointer. This means that no matter how
ASLR shuffles the addresses each time the program is run, this value on the stack will always
contain the correct address of the door buffer. Thus we want to force the program to treat
&door as the rip, because this would cause instructions to be executed starting at door every
time. Also note that the gets function writes our input to door every time, so if we can force
the program to reliably execute instructions at door, we have defeated ASLR.

Final Exam Page 10 of 30 CS 161 – Spring 2018

SID:

Now our goal is to make the program believe that &door is an rip. To do this, we have to
make use of the gadgets from the previous question. Note that the gadgets can be used in
two ways: if we start executing instructions at 0x080484a2, the program will subtract 14 from
the esp register and then execute ret. If we start executing instructions at 0x080484a5, the
program will just execute ret. A similar idea works for Gadget 2. In both cases, note that
position-independent executables are not enabled, so the address of the gadget instructions (in
the code section) will not change.

A quick refresher on the ret instruction: it is effectively equivalent to pop %eip. In other
words, it takes the next value on the stack, places it in the eip register, and then increments
esp by 4 to delete the value off the stack. The eip register is the program counter, so this can
also be thought of taking the next value on the stack, treating it as an address, and jumping
program execution to that address. In other words, we are treating the next value on the stack
as an rip and executing the instructions at the rip.

If we want the program to treat &door as an rip, we should force the esp to point at &door, and
then execute a ret instruction. This will cause &door to be treated as an rip, and instructions
at door to be executed.

After the rip of deja vu is popped off the stack, the esp is pointing 4 bytes above the rip of
deja vu. This is above &door, which is where we want esp to point. Thus we want to decrement
esp and move it further down the stack. We can achieve this by overwriting the rip with the
address of the sub $0x14, %esp instruction:

[4] rip of deja_vu 0x080484a2 (sub, ret)

[4] sfp of deja_vu

[4] door4

[4] door3

[4] door2

[4] door1

[4] char *s = &door

[4] rip of gets

[4] sfp of gets

[4] char * s_

Now, when the deja vu function exits, it will start executing instructions at 0x080484a2.
This means the program will decrement esp by 0x14 = 20 bytes to door2, then execute a ret

instruction. The ret instruction treats door2 as an rip and executes instructions there.

After this ret instruction, esp is at door3. We could try decrementing esp again, but since
we can only decrement esp in multiples of 20 bytes, that would cause the esp to move too far
below &door. Alternatively, we could try to increment esp in multiples of 4 bytes, using the
ret instruction. (Recall that the ret instruction causes esp to move up by 4 bytes.)

Since decrementing esp now would take us too far below &door, our strategy is to increment esp
a little bit, and then once it’s in the right location, decrement esp to force it to point exactly
at &door. This technique is known as stack juggling.

Let’s try to stack juggle esp into the right place. The last ret instruction caused instructions
at door2 to execute, so we should put a ret instruction here to increment esp.

Final Exam Page 11 of 30 CS 161 – Spring 2018

SID:

[4] rip of deja_vu 0x080484a2 (sub, ret)

[4] sfp of deja_vu

[4] door4

[4] door3

[4] door2 0x080484a5 (ret)

[4] door1

[4] char *s = &door

[4] rip of gets

[4] sfp of gets

[4] char * s_

When this ret instruction gets executed, it will increment esp by 4 bytes to door4 (esp was
at door3 after the previous ret). This ret will treat the value at door3 as an rip, and start
executing instructions at the address stored in door3.

Decrementing esp by 20 bytes from door4 would still take us below &door, so we need to insert
another ret instruction at door3 to increment esp one more time.

[4] rip of deja_vu 0x080484a2 (sub, ret)

[4] sfp of deja_vu

[4] door4

[4] door3 0x080484a5 (ret)

[4] door2 0x080484a5 (ret)

[4] door1

[4] char *s = &door

[4] rip of gets

[4] sfp of gets

[4] char * s_

As a result of this ret instruction, esp will be at the sfp of deja vu, and the program will treat
door4 as an rip.

Decrementing esp by 20 bytes from the sfp of deja vu will make it point exactly at &door, so
we are done with stack juggling! We insert the instruction to subtract 20 from esp at door4.
The subtraction will cause esp to point at &door, and the ret will cause &door to be treated
as an rip.

[4] rip of deja_vu 0x080484a2 (sub, ret)

[4] sfp of deja_vu

[4] door4 0x080484a2 (sub, ret)

[4] door3 0x080484a5 (ret)

[4] door2 0x080484a5 (ret)

[4] door1

[4] char *s = &door

[4] rip of gets

[4] sfp of gets

[4] char * s_

Since &door is treated as an rip, this exploit will cause instructions at door to execute. So we
put our 4-byte shellcode at the start of door.

Finally, we fill in the sfp of deja vu with garbage, since it wasn’t needed in the exploit. Our
final exploit looks like this:

Final Exam Page 12 of 30 CS 161 – Spring 2018

SID:

[4] rip of deja_vu 0x080484a2 (sub, ret)

[4] sfp of deja_vu garbage

[4] door4 0x080484a2 (sub, ret)

[4] door3 0x080484a5 (ret)

[4] door2 0x080484a5 (ret)

[4] door1 shellcode

[4] char *s = &door

[4] rip of gets

[4] sfp of gets

[4] char * s_

Our final input looks like this:

• Shellcode: \xf0\x0f\xc7\xc8

• ret: \xa5\x84\x04\x08

• ret: \xa5\x84\x04\x08

• subtract 20 from esp, ret: \xa2\x84\x04\x08

• padding to overwrite sfp: AAAA

• subtract 20 from esp, ret: \xa2\x84\x04\x08

Other solutions exist.

Final Exam Page 13 of 30 CS 161 – Spring 2018

SID:

Problem 4 Mystery Matrix Math (15 points)
Consider the following code which performs a mystery operation on the input matrix.

1 void mystery(int **A, size_t m, size_t n) {

2 for (size_t i = 0; i < m; i++) {

3 for (size_t j = 0; j < n; j++) {

4 A[i][j] = A[j][i];

5 }

6 }

7 }

Assume that m and n are both non-zero. Ignore the possibility of negative indices.

(a) For each of the subparts below, mark necessary preconditions for mystery to be memory-safe.

i. A 6= NULL

size(A) > m

size(A) ≥ m

size(A) > n

size(A) ≥ n

Solution: Since we dereference A, we need to ensure that A 6= NULL. Note that we access
A[i] from 0 ≤ i < m, so we need size(A) ≥ m. We also access A[j] from 0 ≤ j < n, so we
need size(A) ≥ n.

ii. m 6= i, n 6= j

i < m, j < n

i, j < max(m,n)

0 ≤ i, j

Solution: None of these are preconditions to the function, they are invariants.

iii. ∀i : i < m =⇒ A[i] 6= NULL

∀j : j < n =⇒ A[j] 6= NULL

∀i : i < min(m,n) =⇒ A[i] 6= NULL

∀i∀j : i < m ∧ j < n =⇒ A[i][j] 6= NULL

∀i∀j : i, j < max(m,n) =⇒ A[i][j] 6=
NULL

Solution: We dereference A[i] for 0 ≤ i < m, so we need to make sure these are not NULL.
We also dereference A[j] for 0 ≤ j < n, so we need to check those too.

Note that Option 3 is implied by Options 1 and 2, so it does not matter if you put it or
not.

The other conditions are not valid, they check if the integers are null, which is not possible.
(We only check if something is NULL when we are dereferencing it.)

iv. ∀i : i < m =⇒ size(A[i]) ≥ n

∀i : i < n =⇒ size(A[i]) ≥ n

∀j : j < m =⇒ size(A[j]) ≥ m

∀j : j < n =⇒ size(A[j]) ≥ m

Solution: This is just checking for valid accesses in the inner loop.

Final Exam Page 14 of 30 CS 161 – Spring 2018

SID:

(b) For each of the following postconditions, indicate if they hold or not. Assume that the preconditions
hold. Let A be the original matrix, and let A′ be the transformed matrix.

i. All of the preconditions, applied to A′.

True False

Solution: All of the preconditions above apply to A′. All of the preconditions are about
memory-safety, and we have not changed the allocation of A′ itself.

ii. ∀i : i < m =⇒ A[i] = A′[i]

True False

Solution: This checks the pointers have not changed, which is true since (again) the
allocation of A′ has not changed.

Final Exam Page 15 of 30 CS 161 – Spring 2018

SID:

Problem 5 Scared of Commitment (12 points)
Alice and Bob are playing a game which involves flipping a coin. To play, Alice begins by calling a side
(Heads or Tails). Bob then flips the coin and announces the result to Alice. Alice wins if she correctly
guesses the coin flip.

Alice and Bob do not trust each other. Alice is scared that Bob will lie about the result of the flip once
he knows Alice’s guess. Bob is scared that Alice will lie about her original guess once she knows the
result of the flip. In order to solve this problem, we have Alice and Bob use a commitment scheme.
A secure commitment scheme prevents both players from cheating the result of the coin flip.

Evaluate each of the proposed commitment schemes below, where a is a single bit representing Alice’s
guess and b is a bit representing the result of Bob’s coin flip. Explain your answers.

You may assume that SHA256 is a random oracle. (Do not worry if you do not know what that means.)

(a) 1. Alice generates a random 128b string R.

2. Alice sends R and SHA256(a||R) to Bob.

3. Bob sends b to Alice.

4. Alice reveals a.

5. Bob checks that SHA256(a||R) equals the value Alice sent before.

Secure Insecure

Explain:

Solution: Insecure. Bob can try a = 0 and a = 1, and determine which one Alice chose.

(b) 1. Alice generates a random 128b string R.

2. Alice sends SHA256(a||R) to Bob.

3. Bob sends b to Alice.

4. Alice sends a and R to Bob.

5. Bob checks that SHA256(a||R) equals the value Alice sent before.

Secure Insecure

Explain:

Solution:

Secure. Once Alice has committed to H(a||R), she cannot find another hash because the
hash function is collision-resistant. Bob cannot find a because the hash function is one-way.
(Technically we need the hash function to be a random oracle.)

(c) 1. Alice generates a 128b key k and a 127b random padding R.

2. Alice sends C = Ek(a||R) to Bob, where Ek is the AES block cipher.

3. Bob sends b to Alice.

4. Alice reveals k and a||R.

5. Bob decrypts C to recover a and R, and checks that they match what Alice sent.

Final Exam Page 16 of 30 CS 161 – Spring 2018

SID:

Secure Insecure

Explain:

Solution: Insecure. After Bob sends b, Alice can generate other keys k′, and calculate decryp-
tions of C until she gets one whose first bit is b. Say that the resulting plaintext is M = b||R′.
Then at step 3, Alice can send k′ and b||R′ and fool Bob.

Note that it is infeasible to fix b and R′ in advance and then attempt to generate k′ such that
AESk′(b||R′) matches.

Final Exam Page 17 of 30 CS 161 – Spring 2018

SID:

Problem 6 Vaults (16 points)
A bank wants to set up a vault. They give all of their employees badges, which contain a microcontroller,
a per-employee symmetric key k, the ElGamal public key KV of the vault, and a password P which is
needed to open the vault.

The bank knows that sending passwords in plaintext is bad, so they decide to encrypt it first. To send
the password P to the vault, the badge performs the following protocol.

1. The badge uses the vault’s ElGamal public key KV to encrypt its employee symmetric key k.

2. The badge sends EKV
(k),AES-CTRk(P).

The vault then decrypts the badge’s message:

1. The vault decrypts EKV
(k) using its ElGamal private key. Since the key k is always 256 bits long,

the vault ignores any excess bits (i.e., it takes the key mod2256).

2. The vault uses k to decrypt AES-CTRk(P).

3. If the decrypted password matches the correct password, the vault unlocks itself (if it is locked) or
locks itself (if it is unlocked).

There is no limit to the number of times somebody can attempt to authenticate.

Mallory is an attacker with physical access to the vault who wants to break-in. Mallory manages to get
a small “skimmer” device placed on the surface of the vault. The skimmer acts as a man-in-the-middle,
which can spoof and intercept messages between a badge and the vault. The next day, the vault manager
uses his badge to open the vault door.

(a) Explain how Mallory should program her skimmer in order to allow her to open and close the vault
door again at some later time.

Solution: Simply replay the old ciphertext.

(b) Using your exploit in part (a), Mallory breaks open the vault. The room contains a post-it note
with the password P . It also contains a flash drive of sensitive documents, encrypted with the vault
manager’s symmetric key km. Mallory needs to decrypt these documents!

i. ElGamal encryption is malleable: Given (1) the ElGamal encryption (c1, c2) of a message m
and (2) an integer a, one can find the encryption of am without knowing m! Show how to do
this. Recall that ElGamal encryption is Enc(PK,m) = (gr mod p,m·PKr mod p) = (c1, c2),
for r chosen at random, and g, p public parameters. (No explanation needed. You can use this
in later parts even if you do not show it here.)

ii. How can Mallory determine the least significant bit of the key km? Recall: From Mallory’s
skimmer, she knows EKV

(km) and AES-CTRkm
(P). From the post-it note, she knows P .

Everyone knows the public key KV of the vault. Hint: Mallory might have some success if she
interacts with the vault again.

Final Exam Page 18 of 30 CS 161 – Spring 2018

SID:

iii. Extend your attack above to determine the entire key km.

Solution:

Let EKV
(km) = (c1, c2) be the ElGamal ciphertext that the badge sends to the vault. Recall

that we can generate an encryption of akm by sending (c1, ac2). Define Kb = (c1, 2
bc2), i.e. the

encryption of km shifted b bits to the left. Note that this makes the bottom b bits zero.

Mallory begins by sending sending K255,AES-CTR10...00(P). The key K255 has only the first
bit set. If the vault door then open, Mallory knows that the least significant bit of the key km
is 1. If remains locked, it was zero.

Mallory can repeat this process for each bit. For example, say that she determined before that
the least significant bit of the key was 1. Then she can send K254,AES-CTR110...00(P). Again,
if the vault opens, she knows the second least significant bit was 1. Otherwise, it was zero.

Using this, Mallory can wholly determine the key km.

This question is adapted from a real-world problem: https://arxiv.org/abs/1802.03367.

Final Exam Page 19 of 30 CS 161 – Spring 2018

https://arxiv.org/abs/1802.03367

SID:

Problem 7 MS SQL (15 points)
Microsoft’s MS SQL protocol allows a server and a client to negotiate an encryption protocol. Both sides
begin the PRELOGIN stage by sending the one of the following flags in an unencrypted and unauthenticated
format:

1. NOT SUPPORTED (NS): “I do not support encryption. If you try to use it, I will abort this connection.”

2. SUPPORTED (S): “I support, but do not require, encryption. Please use it if you support it.”

3. REQUIRED (R): “I require encryption. If you cannot use it, I will abort this connection.”

The server and client attempt to use the highest security that they can agree on. If they manage to agree
on encryption, the rest of the conversation is encrypted using TLS with a server certificate, signed by
a mutually trusted certificate authority. Assume that both sides of the connection properly implement
the TLS protocol.

For each of the following scenarios below, determine if an active man-in-the-middle can compromise the
confidentiality of the connection.

(a) Client sends R; Server sends R.

Secure Insecure

Solution:

Both sides require encryption, so TLS will be established and a man-in-the-middle cannot break
the encryption.

(b) Client sends S; Server sends S.

Secure Insecure

Solution:

Insecure. A MITM can forge either side’s message to say NS, therefore removing the encryption.

(c) Client sends S; Server sends R.

Secure Insecure

Solution:

Insecure. A MITM intercepts the server message saying R, and passes NS to the client. The
MITM then performs the TLS handshake with just the server. It encrypts all the client’s data
to it, acting like a proxy.

(d) Client sends R; Server sends S.

Secure Insecure

Solution:

Secure. Note the attack described above does not work: the MITM cannot perform the TLS
handshake with just the client because it does not the private key corresponding to the server
certificate.

Final Exam Page 20 of 30 CS 161 – Spring 2018

SID:

(e) Alice proposes a modification to the above protocol. Rather than sending its encryption level
unauthenticated, the server will present a signed message of the encryption level it supports, along
with its TLS certificate. The client verifies the certificate and the signed message. Reevaluate the
above choices in this new protocol.

Assume the server never changes what encryption level it supports. Assume that all clients and
servers (even if they do not support encryption) still follow Alice’s protocol.

True or False: As long as both sides support encryption, the connection will be secure against a
man-in-the-middle.

True False

Solution:

We only need to consider two cases above:

Client sends S; Server sends S: A MITM cannot change the server’s message, so they must
change the client’s message. But if the attacker changes the client’s message to read NS, the
client will notice that the server is not using TLS (even though it supposedly supports it) and
abort the connection.

Client sends S; Server sends R: A MITM cannot change the server’s message, so the attack
above does not work.

Final Exam Page 21 of 30 CS 161 – Spring 2018

SID:

Problem 8 Fiat Tux (Let There Be DNS) (15 points)
You’re in charge of manually running the DNS resolver for AirBears2. AirBears2 has a reputation for
impeccable reliability among its users, and it’s your job to make sure that nothing goes wrong on your
end so that its users receive top-notch performance.

(a) You start up your DNS resolver for the first time, with no state in your cache. You do not currently
make use of DNSSEC. You have the root name server’s IP address hard-coded into your configura-
tion (and nothing else). You receive your first DNS query from a user for inst.eecs.berkeley.edu.
Where should you send your initial query?

Solution: Your initial query goes to the hard-coded root server’s IP address.

(b) You send your initial query and receive many responses, but only two of them have matching ID
fields. You discard all responses that do not have matching ID fields, but you still have with two
responses. The responses both contain records for the domain .edu, but the IP addresses in the A
records are different. You also notice that one of them arrived significantly before the other. Which
of the answers should you trust?

Trust the faster one Trust the slower one Trust neither

Solution: There’s no way to know which one is the “right” one. The fact that you got many
responses, most with incorrect ID fields, could suggest someone is trying to spoof DNS responses
to you.

(c) Disregarding your decision in part (b), you choose to trust one of the two answers at random. You
resolve the remainder of the requested domain name, caching all of the the records that you receive
along the way, including any you may have received in part (b). For each remaining step, you
receive a single response, and every response has a matching ID. Eventually, you receive the IP
address of inst.eecs.berkeley.edu. You return this IP address to the user that requested it.

A few minutes later, you receive a complaint from this user claiming that when they attempted to
visit inst.eecs.berkeley.edu, they instead received the webpage for eecseecs.com.

Assume that you are no longer under attack. What entries do you need to remove to ensure that
future resolutions are safe? (You want to remove the minimal number of entries.)

All records

Records ending with .edu

Records ending with .berkeley.edu

Records ending with .eecs.berkeley.edu

Records starting with inst.

Records for inst.eecs.berkeley.edu

Records ending with .com

Records for eecseecs.com

Solution:

You need to empty your cache completely, as the cached entries for .edu, berkeley.edu, and
eecs.berkeley.edu could all be incorrect, as well as any potential additional records provided.
Since you cached everything, any record in your cache could be poisoned.

(d) After the above incident, a disappointed Oski demands that you utilize DNSSEC. Assume that the
rest of the world magically complies with your demands to support DNSSEC. All implementation
details of DNS follow what was taught in lecture.

Final Exam Page 22 of 30 CS 161 – Spring 2018

SID:

We replay the scenario up to part (b), greatly simplified, this time with DNSSEC. You start up
your DNSSEC resolver for the first time, with no state in your cache. You have the root name
server’s IP address and public key hard-coded into your configuration (and nothing else).

You send your initial query and receive two responses. The responses both contain records for the
domain .edu, but the IP addresses in the A records are different. At this given point in time, given
zero tolerance for error, describe how you would determine which answer(s) to trust. If you cannot
trust either answer, write “cannot trust either” and explain your answer briefly.

Solution:

You check for an RRSIG record over the A record for .edu, and if it exists, you validate it with
the hard-coded public key of the root server. If the signature matches the provided A record,
you trust that answer. If both signatures match, you trust both; if neither signature matches,
you trust neither.

Final Exam Page 23 of 30 CS 161 – Spring 2018

SID:

Problem 9 Networking Love Triangle (15 points)

M

A B

Alice, Bob and Mallory are all on a local network. Mallory is an off-path attacker with a super-fast
connection: her packets always arrive first.

Assume Mallory knows the MAC and IP addresses of Alice and Bob’s computers. Assume that Alice
will accept the first valid packet she receives as coming from Bob, and ignore what happens once Bob’s
real packet arrives.

(a) Alice and Bob are communicating through UDP on some unknown ports. What does Mallory need
to guess to insert a fake UDP datagram from Bob to Alice?

Solution: Bob’s source port, Alice’s destination port. (Or just “their ports”.)

(b) Alice and Bob are communicating through TCP on some unknown ports. What does Mallory need
to guess to insert a fake TCP packet from Bob to Alice?

Solution: Bob’s source port, Alice’s destination port. Alice and Bob’s sequence numbers.

(c) Alice is about to send a DNS request to Bob’s resolver for 1.2.3.4.5.6.7.com. What does Mallory
need to guess to spoof the reply?

Solution:

Alice’s (ephermal) source port. DNS transaction ID.

Note we do not need to guess Bob’s port: for DNS it will be port 53.

(d) Alice is about to send an ARP request for Bob’s MAC address. What does Mallory need to guess
to spoof the reply?

Solution: Nothing. An off-path attacker can easily spoof ARP replies.

(e) True or False: If Mallory was on-path, she could spoof all of the above responses with a 100%
success rate.

True False

Solution: An on-path attacker can see all of the information above.

Final Exam Page 24 of 30 CS 161 – Spring 2018

SID:

Problem 10 Tracking (12 points)
Let’s say the web-page at http://cute-puppies.com looks like the following:

<html>

<body>

<p>Here is a GIF of puppies</p>

<script type="text/javascript"

src="http://yahoo.com/analytics.js"></script>

<script type="text/javascript"

src="https://google.com/analytics.js"></script>

</body>

</html>

Note that google.com is loaded over HTTPS, whereas yahoo.com is loaded over HTTP.

Alice uses Mozilla Firefox on her laptop running Microsoft Windows. In her first browser tab, she has
https://berkeley.edu open. In a second tab, she opens http://cute-puppies.com. In a third tab,
she opens http://cute-puppies.com once again.

Assume that no two entities share information out of band. Each of the parts below are independent.

(a) Assuming Alice does not use any tracking protection, which entities know that the same person
visited cute-puppies.com twice?

cute-puppies.com operators

yahoo.com operators

google.com operators

image-host.com operators

Microsoft

Mozilla

Alice’s ISP

UC Berkeley

Solution:

Most sites will see this, as Alice’s browser makes requests to all of these sites twice.

Alice’s ISP sends off all of Alice’s traffic, so of course they can see what sites Alice visits.

Neither Microsoft nor Mozilla collect information about what sites you visit in your browser.

UC Berkeley’s site is in a different origin, so it cannot see information about the cute-puppies.com
tab.

(b) Assume Alice opted in for a privacy service run by her ISP. This privacy service blocks analytics
scripts based on a URL-based blocklist (not host-based). Which entities know that the same person
visited cute-puppies.com twice?

cute-puppies.com operators

yahoo.com operators

google.com operators

image-host.com operators

Microsoft

Mozilla

Alice’s ISP

UC Berkeley

Final Exam Page 25 of 30 CS 161 – Spring 2018

SID:

Solution:

The ISP service can block the HTTP connection, but not the HTTPS connection since HTTPS
hides the path of the URL we are visiting. Even though the ISP can see that the user is
requesting google.com, they do not know if this is an analytics URL.

(c) Assume Alice uses a browser plugin. The browser-plugin blocks the analytics scripts based on a
URL-based blacklist (not host-based). Which entities know that the same person visited cute-puppies.com

twice?

cute-puppies.com operators

yahoo.com operators

google.com operators

image-host.com operators

Microsoft

Mozilla

Alice’s ISP

UC Berkeley

Solution:

The browser plugin sees all requests, so it can also block HTTPS requests.

Final Exam Page 26 of 30 CS 161 – Spring 2018

SID:

(d) Assume Alice uses a VPN run by UC Berkeley. Which entities know that the same person visited
cute-puppies.com twice?

cute-puppies.com operators

yahoo.com operators

google.com operators

image-host.com operators

Microsoft

Mozilla

Alice’s ISP

UC Berkeley

Solution:

Alice’s connection to the VPN is encrypted, so her ISP does not know which sites she is visiting.
However now UC Berkeley sees all of her traffic instead.

Final Exam Page 27 of 30 CS 161 – Spring 2018

SID:

Problem 11 Boogle (15 points)
Boogle is a social networking website that’s looking into expanding into other domains. Namely, they
recently started a map service to try their hand at fusing that with social media. The URL for the main
website is https://www.boogle.com, and they want to host the map service at https://maps.boogle.
com.

(a) Describe how to make a cookie that will be sent to only Boogle’s map website and its subdomains.

Solution: Set the domain parameter of the cookie to .maps.boogle.com

(b) How can Boogle ensure that cookies are only transmitted encrypted so eavesdroppers on the network
can’t trivially learn the contents of the cookies?

Solution: Set the secure flag on each cookie.

(c) Boogle adds the ability for users to check in to locations on maps.boogle.com, but discovers an XSS
vulnerability that slipped through QA. Name a hotfix they can do to prevent scripts from stealing
cookies using XSS.

Solution: Set the HTTPOnly flag on cookies.

(d) Some of the XSS attacks are scraping sensitive information from the map site, like user emails. The
security team wants to know the scope of the vulnerability. Can attackers use XSS to also scrape
sensitive information from the main site, https://www.boogle.com? Explain why or why not.

Solution:

No, the two sites have different origins so https://maps.boogle.com cannot read anything
from https://www.boogle.com.

(e) Boogle wants to be able to host websites for users on their servers. As we saw in HW4, it is not
completely safe to host them on https://[username].boogle.com. Propose an alternate scheme
so that Boogle can still host other users websites with less risk, and explain why this scheme is
better.

Note: It is okay if the user sites interfere with each other, as long as they cannot affect official
Boogle websites.

Solution:

Boogle should create a new domain exclusively for user hosted content, like https://[username]
.boogleusercontent.com. This way, user sites cannot set cookies that will affect all boogle
domains due to the cookie setting policy. This is known as a cookie tossing attack, and
is one of the reasons why github hosts user sites on github.io instead of github.com (see
https://blog.github.com/2013-04-09-yummy-cookies-across-domains/).

Final Exam Page 28 of 30 CS 161 – Spring 2018

https://www.boogle.com
https://maps.boogle.com
https://maps.boogle.com
https://www.boogle.com
https://maps.boogle.com
https://www.boogle.com
https://[username].boogle.com
https://[username].boogleusercontent.com
https://[username].boogleusercontent.com
https://blog.github.com/2013-04-09-yummy-cookies-across-domains/

SID:

Problem 12 Scripts and SQL (15 points)
Answer the following questions about Javascript and SQL.

(a) Oski Bank uses Javascript to deliver account information. The https://oski.bank/account.js

file is generated server-side, and contains information for currently logged-in user. For example,
here is how the file would look for a customer with name “John Doe” and 10232 dollars:

1 display ({ name: "John Doe", money: 10232 });

i. Assume a victim user visits evil.com while this user is logged in with Oski Bank. How could
evil.com use this to steal the user information provided as input to display for this victim
user? Include approximate HTML in your explanation.

Solution:

An evil site just needs to create their own display function, and then include the script.

1 <script >

2 function display(info) {

3 alert(info.name);

4 }

5 </script >

6 <script src="https :// oski.bank/account.js" ></script >

ii. Which of the following could be used to defend against this attack? Assume you can also update
the rest of oski.bank.

Strong Content-Security-Policy

Strict Referer checking

X-Frame-Options header

CSRF Tokens

Whitelist user inputs

Only call display if window == top

Solution: The attack essentially exploits the same idea as CSRF (although it is actually
known as “XSS inclusion”). Therefore any defense to CSRF works.

(b) Oski Bank’s site also contains the following code:

1 name = request.form[’username ’]

2 query = ’SELECT COUNT (*) FROM users WHERE name ="{}"’.format(name)

3 found = database.execute(query).fetchone ()[0]

4 if found: return ’User exists!’, 200

5 else: return ’User not found!’, 404

Assume that the users table also contains a hash column, which is a hexadecimal encoding of the
hash of the user’s password. Explain in detail how you could determine dirks’s hash. (Hint: You
might find the SQLite substr(X, Y, Z) command helpful. It returns the Z character substring of
the string X starting at the Yth character.)

Solution:

Start by sending dirks’’ AND substr(hash, 1, 1) = ‘‘0’’--. If the page prints “User
exists!”, then you know the first hex digit of the hash is “0”. Otherwise, keep trying 1, 2,

..., a, ..., f until you find the first digit.

Final Exam Page 29 of 30 CS 161 – Spring 2018

SID:

Then retry using substr(hash, 2, 1) until you determine the second hex digit. Keep going
for the entire length of the hash.

(Note that the substr command is 1-indexed, but we did not deduct for solutions which treated
it as 0-indexed.)

Final Exam Page 30 of 30 CS 161 – Spring 2018

