
Nicholas Weaver
Spring 2022

CS 161
Computer Security Midterm

Print your name: ,
(last) (first)

Print your student ID:

You have 110 minutes. There are 8 questions of varying credit (149 points total).
For questions with circular bubbles, you may select only one choice.

Unselected option (completely unfilled)

Only one selected option (completely filled)

For questions with square checkboxes, you may select one or more choices.

You can select

multiple squares (completely filled)

Q1 Honor Code (1 point)
Read the following honor code and sign your name.

I understand that I may not collaborate with anyone else on this exam, or cheat in any way. I am
aware of the Berkeley Campus Code of Student Conduct and acknowledge that academicmisconduct
will be reported to the Center for Student Conduct and may further result in, at minimum, negative
points on the exam and a corresponding notch on Nick’s Stanley Fubar demolition tool.

Sign your name:

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 29

Q2 True/false (30 point)
Each true/false is worth 2 points.

Q2.1 True or False: In a big-endian system, consecutive bytes are written from high to low addresses,
rather than from low to high addresses.

True False

Solution: False. Endianness doesn’t affect the direction in which consecutive bytes are written.
Consecutive bytes are always written from low to high addresses, regardless of endianness.

Q2.2 True or False: It’s impossible to reseed a secure PRNG with an input that would cause it to lose
entropy.

True False

Solution: True. Reseeding must not reduce the amount of entropy in the PRNG’s state, only
increase it.

Q2.3 True or False: If an attacker compromises the internal state of a secure PRNG, and then the PRNG
is reseeded with a high-entropy input that the attacker doesn’t know, the attacker is no longer
able to predict future outputs of the PRNG.

True False

Solution: True. Reseeding the PRNG incorporates additional entropy, which the attacker
doesn’t know, even if they previously compromised the PRNG’s internal state.

Q2.4 True or False: Using a memory safe language is the only way to defend against all serialization
vulnerabilities.

True False

Solution: False. Memory-safe language defend against memory safety vulnerabilities, which
are not exactly the same as serialization vulnerabilities. Log4J is in Java, which is considered a
memory safe language.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 29 CS 161 – Spring 2022

Q2.5 Consider the following symmetric encryption scheme for encrypting and decrypting messages:
Enc(K,M) = MK , and Dec(K,C) = C

1
K . Assume that the keyK , messageM , and ciphertext

C are positive integers.
True or False: This scheme is IND-CPA secure.

True False

Solution: False. There’s no randomness, so this scheme is deterministic, and by definition,
deterministic schemes are not IND-CPA secure.

Q2.6 True or False: In Diffie-Hellman, an attacker who sees ga mod p and b has enough information
to learn the shared secret.

True False

Solution: True. The attacker can compute (ga)b mod p to learn the secret. a and b are the
secrets in Diffie-Hellman, so security is lost if an attacker learns either value.

Q2.7 True or False: A secure block cipher will always map the same input to multiple outputs, since
passing the same plaintext through a block cipher will yield different ciphertexts.

True False

Solution: False. An n-bit block cipher is a random permutation that maps each of the 2n
inputs to exactly one of the 2n outputs, uniquely. It is a bijective function.

Q2.8 EvanBot designs a new variant of Diffie-Hellman that requires a second public parameter g2.
EvanBot’s scheme is secure using any constant, but everyone must use the same constant.
True or False: EvanBot should explain to everyone how g2 is generated.

True False

Solution: True. This is the idea behind nothing-up-my-sleeve numbers. Explaining how a
constant was generated allows users of the system to trust that the number doesn’t contain a
backdoor.
For example, using a random-looking number like 10928842might make users suspicious that
EvanBot has inserted some secret backdoor into the algorithm. Using a constant with obvious
significance like 12345678 makes it less likely that it was chosen to exploit a weakness in the
algorithm.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 29 CS 161 – Spring 2022

Q2.9 During a rocket launch, the launch mechanism depends on the precise positioning of the Earth
and the local weather at launch time.
True or False: A possible communications delay between a weather beacon located on the ground
and the rocket launch mechanism may present a time-of-check-to-time-of-use issue.

True False

Solution: True. The delay might allow an attacker to change the state of the system between
when amessage is sent from the ground and when the message arrives at the rocket mechanism.
In general, any delay in the system could present a potential TOCTTOU vulnerability.

Q2.10 Consider a modification to the one-time pad scheme for encrypting a fixed-size message M using
a secret key K and initialization vector IV , as described by the following algorithm:

C = (IV,K ⊕M ⊕ SHA-256(IV))

True or False: If we choose a unique, random IV each time we encrypt a message, then this
scheme is IND-CPA secure even when we reuse a keyK .

True False

Solution: False. Since the attacker knows the initialization vector (it’s directly included in
the ciphertext), the attacker can just reverse the XOR of SHA-256(IV ||M)) to rederive the
original OTP ciphertext, which effectively reduces this to OTP, which is not IND-CPA secure.

Q2.11 True or False: Defense in depth is recommended when protecting legacy C code from memory
safety vulnerabilities.

True False

Solution: True. If we’re dealing with a legacy C codebase, we can’t rewrite the code in a
memory safe language, meaning that we want to enable all memory safety protections we
have access to (e.g. ASLR, canaries, etc.). This is defense in depth.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 29 CS 161 – Spring 2022

Q2.12 Consider a development tool where developers are prompted with two options when setting up a
new project: a memory-unsafe language (the default option) and a memory-safe language.
True or False: This is a violation of Shannon’s Maxim.

True False

Solution: False. Shannon’sMaxim (which is related to security through obscurity) has nothing
to do with this; rather, the principle at hand is “consider human factors.” The memory-safe
language should be the default option, so more people are likely to choose it!
Design in security from the start may also be a principle to use here.

Q2.13 Alice wants to verify that a public key, PKB , belongs to Bob, and she knows that the pub-
lic key PKCA belongs to a trusted certificate authority. She receives a message from Bob:
{“PKB belongs to Bob”}SK−1

CA
.

True or False: Alice can now trust that PKB belongs to Bob.

True False

Solution: True. Even though the message itself was sent from Bob, it was signed by the CA.
Alice can verify that the CA signed the certificate using PKCA, so she can trust PKB .

Q2.14 Alice wants to verify that a public key, PKB , belongs to Bob, and she knows that the public key
PKCA belongs to a trusted certificate authority. She receives a message from Mallory (whose
public key is PKM):

{︂
{“PKB belongs to Bob”}SK−1

CA

}︂
SK−1

M

.

True or False: Alice can now trust that PKB belongs to Bob.

True False

Solution: True. Even thoughMallory signed the statement that was initially signed by the CA,
since {“PKB belongs to Bob”}SK−1

CA
is still part of the message and has a trusted signature

(you can ignore the outer signature and verify the inner signature against PKCA), Alice can
trust that the public key belongs to Bob.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 29 CS 161 – Spring 2022

Q2.15 True or False: Salting password hashes with an n-bit salt increases the difficulty of conducting an
offline, brute-force attack on all users by a factor of n. Assume that each hash computation itself
runs in constant time.

True False

Solution: False. Salting passwords increases the asymptotic complexity of brute-force attack
against a database with M hashes and N possible passwords per hash from O(M +N) to
O(MN), but the length of the salt is mostly irrelevant, and the important factor is that salts
are unique per hash.

Q2.16 (0 points) True or False: Batman is EvanBot.

True False

Solution: Everyone is Batman if you look deep enough within your soul.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 6 of 29 CS 161 – Spring 2022

Q3 The Joker’s Schemes (17 point)
The Joker has decided to evaluate the following encryption scheme. Assume the block cipher uses an
n-bit block size, and the scheme uses a 2n-bit IV = IV1∥IV2, where IV1 and IV2 are each n bits:

C1 = P1 ⊕ EK(IV1)

C2 = P2 ⊕ EK(IV2 ⊕ C1)

Ci = Pi ⊕ EK(Ci−2 ⊕ Ci−1)

Assume that the IV is sent along with the ciphertext in all instances.
Clarification issued during exam: Assume all IVs are generated per message.

Q3.1 (2 points) Write a formula to decrypt Pi (for i > 2) using this scheme.

Solution: Pi = Ci ⊕ EK(Ci−2 ⊕ Ci−1)

One way to obtain this expression is to XOR both sides of the encryption equation by Pi.

Q3.2 (4 points) Is this scheme IND-CPA secure with a randomly generated IV? If you put yes, provide a
brief justification (no formal proof necessary). If you put no, provide a strategy to win the IND-CPA
game with probability greater than 1

2 .

Yes No

Solution: This scheme is similar to the CTR mode of encryption, in that the plaintext blocks
are directly XORed with a psuedorandom stream of bits. The input toEK is always guaranteed
to be unique: IV1 and IV2 ⊕ C1 are pseudorandom, so they are unique. Because EK is a
pseudorandom permutation, the future inputs Ci−2 ⊕ Ci−1 will also be unique.
This construct is most closely related to the CFB mode of operation, which uses Ci = Pi ⊕
EK(Ci−1).

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 7 of 29 CS 161 – Spring 2022

Q3.3 (4 points) Which of the following methods of choosing IV results in an IND-CPA secure scheme?
Select all that apply.

IV = 02n (the bit 0 repeated 2n times)

IV = H(i), where i is a monotonically increasing counter that increments for each message
and H is a cryptographic hash function that outputs 2n bits

IV = IV1∥IV2, where IV1 is a randomly chosen, n-bit number and IV2 = 0n

IV = IV1∥IV2, where IV1 = 0n and IV2 is a randomly chosen, n-bit number

None of the above

Solution: Using a constant IV (02n) doesn’t introduce any randomness into the scheme, so
the scheme would be deterministic, making it not IND-CPA.
Because the IV is always unique (even though it is predictable), the output of the block cipher is
unpredictable, and all future encryptions using the block cipher result in further unpredictable
outputs, similar to CBC mode. When XORed with the plaintext, this results in an IND-CPA
secure scheme.

Q3.4 (4 points) The Joker encrypts a 5-block long message and sends it to the Mob. Batman intercepts
the encrypted message and changes the second block of the cipher text C2. Which of the following
blocks of plaintext no longer decrypts to its original value? Select all that apply.

P1

P2

P3

P4

P5

None of the above

Solution: Based on the decryption formula, decrypting plaintext block i requires ciphertext
blocks i− 2, i− 1, and i, so P2, P3, and P4 would be corrupted.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 8 of 29 CS 161 – Spring 2022

Q3.5 (3 points) Which of the following statements are true about this encryption scheme? Select all
that apply.

Encryption is parallelizable

Decryption is parallelizable

If C is the ciphertext ofM , then C ′ = C ⊕ x decrypts to the plaintextM ⊕ x

None of the above

Solution: Encryption is not parallelizable because each ciphertext block relies on the previous
ciphertext block. However, decryption is parallelizable since no decryption relies on any other
plaintext block.
Even though this scheme is kind of like a stream cipher (like CTR mode), flipping a bit of the
ciphertext (i.e. XORing with x) doesn’t result in exactly one bit flipped in the plaintext. If a
bit in ciphertext block Ci is flipped, then the decryption of Pi+1 and Pi+2 will be gibberish,
because EK(Ci−2 ⊕ Ci−1 ⊕ x) results in a completely different output since EK is a random
permutation.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 9 of 29 CS 161 – Spring 2022

Q4 The Red Hood (15 point)
Jason Todd decides to launch a communications channel in order to securely communicate with the
Red Hood Gang over an insecure channel. Jason wants to test different schemes in his attempt to attain
confidentiality and integrity.
Notation:

• M is the message Jason sends to the recipient.
• K1, K2, and K3 are secret keys known to only Jason and the recipient.
• ECB, CBC, and CTR represent block cipher encryption modes for a secure block cipher.
• Assume that CBC and CTR mode are called with randomly generated IVs.
• H is SHA2, a collision-resistant, one-way hash function.
• HMAC is the HMAC construction from lecture.

Decide whether each scheme below provides confidentiality, integrity, both, or neither. For all question
parts, the ciphertext is the value of C; t is a temporary value that is not sent as part of the
ciphertext.

Q4.1 (3 points)

t = CBC(K1,M) C1 = ECB(K2, t) C2 = HMAC(K3, t) C = (C1, C2)

Confidentiality only

Integrity only

Both confidentiality and integrity

Neither confidentiality nor integrity

Solution: This is a typical encrypt-then-MAC scheme with a twist: Instead of including the
ciphertext t directly, the ciphertext (but not the MAC) is additionally encrypted with ECBmode.
Even though both the HMAC and ECB leak information about t, t doesn’t leak information
about the plaintext, so the scheme is confidential. The HMAC over t ensures that the input
passed to CBC decryption can’t be tampered with, so the scheme maintains integrity.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 10 of 29 CS 161 – Spring 2022

Q4.2 (3 points)

t = ECB(K1,M) C1 = CBC(K2, t) C2 = HMAC(K3, t) C = (C1, C2)

Confidentiality only

Integrity only

Both confidentiality and integrity

Neither confidentiality nor integrity

Solution: Notice that t leaks information about the message because it uses insecure ECB
mode. C2 then leaks information about t, which leaks information about the plaintext, so
confidentiality is lost (in this case, C2 is deterministic). However, because the HMAC is
computed over t, which is decryptable to the message, integrity is maintained.

Q4.3 (3 points)

C1 = ECB(K1,M) C2 = H(K2∥C1) C = (C1, C2)

Confidentiality only

Integrity only

Both confidentiality and integrity

Neither confidentiality nor integrity

Solution: C1 leaks information aboutM it uses insecure ECB mode, so confidentiality is lost.
C2 does not maintain integrity as it vulnerable to length extension attacks—an attacker could
forge C ′

2 = H(K2∥C1∥x) and C ′
1 = C1∥x, which would be accepted by anyone verifying the

hash.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 11 of 29 CS 161 – Spring 2022

Q4.4 (3 points) For this subpart only, assume that i a monotonically, increasing counter incremented
per message.

C1 = CTR(K1,M) C2 = HMAC(i,H(C1)) C = (C1, C2)

Clarification issued during exam: Assume that the counter, i, starts at 0.

Confidentiality only

Integrity only

Both confidentiality and integrity

Neither confidentiality nor integrity

Solution: Because i is a known value, the key to the HMAC can be predicted, and the scheme
does not maintain integrity. However, since the ciphertext is encrypted with secure CTR
mode, and the insecure HMAC is computed only over the ciphertext, the scheme maintains
confidentiality.

Q4.5 (3 points) For this subpart only, assume that the block size of block cipher is n, the lengths of K1

andK2 are n, the length of M must be 2n, and the length of the hash produced by H is 2n.

C1 = CBC(K1,K2) C2 = M ⊕ C1 ⊕H(C1) C = (C1, C2)

Confidentiality only

Integrity only

Both confidentiality and integrity

Neither confidentiality nor integrity

Solution: Notice that the attacker already knows the value of C1 since it is sent with the
ciphertext. Because of this, the adversary can just compute H(C1) then C2 ⊕ C1 ⊕H(C1) in
order to recoverM , so the scheme is not confidential. Additionally, there is no MAC, so the
scheme does not have integrity.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 12 of 29 CS 161 – Spring 2022

Q5 Ra’s Al Gamal (10 point)
Recall the ElGamal scheme from lecture:

• KeyGen() = (b, B = gb mod p)

• Enc(B,M) = (C1 = gr mod p, C2 = Br ×M mod p)

Q5.1 (3 points) Is the ciphertext (C1, C2) decryptable by someone who knows the private key b? If you
answer yes, provide a decryption formula. You may use C1, C2, b, and any public values.

Yes No

Solution: The decryption formula is M = C−b
1 × C2.

Q5.2 (4 points) Consider an adversary that can efficiently break the discrete log problem. Can the
adversary decrypt the ciphertext (C1, C2) without knowledge of the private key? If you answer
yes, briefly state how the adversary can decrypt the ciphertext.

Yes No

Solution: An adversary that can break the discrete log problem can recover r from C1 = gr

or b from B = gb, so they can compute gbr and recover the original message.

Q5.3 (3 points) Consider an adversary that can efficiently break the Diffie-Hellman problem. Can the
adversary decrypt the ciphertext (C1, C2) without knowledge of the private key? If you answer
yes, briefly state how the adversary can decrypt the ciphertext.

Yes No

Solution: An adversary that can break the Diffie-Hellman problem can recover gbr from
C1 = gr and B = gb, so they can recover the original message.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 13 of 29 CS 161 – Spring 2022

Q6 Probability of MANBAT (21 point)
Consider the following vulnerable C code:

1 void unsa f e () {
2 char b u f f e r [8] ;
3 g e t s (b u f f e r) ;
4 }
5
6 in t main (void) {
7 unsa f e () ;
8 return 0 ;
9 }

Assume that there is no compiler padding or additional saved registers in all subparts. Also assume
that SHELLCODE represents 8-byte shellcode.
You run this code in GDB once and discover that the address of buffer is 0x3a9d2800.

Q6.1 (3 points) Suppose that no memory safety defenses are enabled. Which of the following exploits
would cause shellcode to execute? Select all that apply.

'A' * 12 + '\x10\x28\x9d\x3a' + SHELLCODE

SHELLCODE + 'A' * 4 + '\x00\x28\x9d\x3a'

'A' * 4 + SHELLCODE + '\x04\x28\x9d\x3a'

None of the above

Solution: This is a simple gets buffer overflow. The stack frame looks something like this: |
RIP of unsafe
SFP of unsafe

buf

buf

Since the SHELLCODE fits within the 12 bytes of space, all we need to do is place the SHELL-
CODE somewhere within that space, fill the rest of the buffer with garbage bytes, and then
point the RIP to the address of the shellcode. Another possible solution is to completely fill up
the buffer with garbage bytes, place the SHELLCODE immediately after the RIP, and make the
RIP point to RIP+4, which is the address of the SHELLCODE (just like Q1 of Project 1)

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 14 of 29 CS 161 – Spring 2022

For the rest of this question, if ASLR is enabled, each segment of memory is exactly 0x10000 bytes long,
and each starting address always has 0x0000 as the lower (least significant) bits and has 16 random
upper (most significant) bits. For example, the stack segment might be located between addresses
0x3a9d0000 to 0x3a9e0000, but it will not be located between addresses 0x3a9d0100 to 0x3a9e0100,
because the bottom 16 bits are not all zeros.
With ASLR enabled, you run the program in GDB three times and print the address of buffer each
time. You see the following addresses: 0xef062800, 0x2aec2800, and 0x10702800.

Q6.2 (3 points) Suppose that ASLR is enabled, and no other memory safety defenses are enabled. Consider
the following exploit: 'A' * 12 + '\x10\x28\x9d\x3a' + SHELLCODE.
What is the approximate probability that the above exploit will work on any given execution of
the program?

0

1/232

1/216

1/24

1/2

1

Solution: The upper 16 bits will change each time each time the program is executed, but the
relative addresses on the stack will not change, so the lower bits will stay consistent.
The probability that the random upper 16 bits match our 16-bit guess is 1/216.

Q6.3 (3 points) Suppose that ASLR and stack canaries are enabled, and no other memory safety defenses
are enabled. Assume that the stack canary is four completely random bytes (no null byte).
Consider the following exploit: 'A' * 16 + '\x14\x28\x9d\x3a' + SHELLCODE.
What is the approximate probability that the above exploit will work on any given execution of
the program?

0

1/216×32

1/248

1/232

1/216

1

Solution: There are 16 bits of entropy from ASLR and 32 bits of entropy from the stack canary.
In total, there are 48 bits we need to guess.
Note that the extra 4 bits of padding are there to overwrite the stack canary. With probability
1/232, the stack canary will just happen to be four As and match what we overwrote the canary
with.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 15 of 29 CS 161 – Spring 2022

Q6.4 (4 points) Which of the following additional vulnerabilities in the code would increase the proba-
bility of success of your exploit from the previous part? Select all that apply.
Clarification during exam: This question part has been dropped. Everyone will receive points on
this question part.

A vulnerability that lets you read any memory in the program

A vulnerability that lets you read any memory from the stack only

A bug that causes one byte of the stack canary to always be 0x61

A null byte in the stack canary

None of the above

Solution: This question has been dropped.
The intent of this question was that the exploit could be tweaked to accommodate for the last
two options, but as that was not clear, the question has been dropped. The intended answer
explanation is that (a) a bug that decreases the amount of entropy (randomness) in the canary
makes the canary easier to brute-force, and (b) reading memory on the stack (or anywhere in
the program) will leak addresses that can be used to break ASLR.

Q6.5 (3 points) Suppose that ASLR, stack canaries, and non-executable pages are enabled, and no other
memory safety defenses are enabled. Assume that the stack canary is four completely random bytes
(no null byte).
Consider the following exploit: 'A' * 16 + '\x14\x28\x9d\x3a' + SHELLCODE
What is the approximate probability that the above exploit will work on any given execution of
the program?

0

1/216×32

1/248

1/232

1/216

1

Solution: Non-executable pages prevents the attacker from executing any code they wrote
into memory, so this exploit now has a probability of zero.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 16 of 29 CS 161 – Spring 2022

Q6.6 (3 points) Consider the following modified version of the original code:

1 char b u f f e r [8] ;
2
3 void unsa f e () {
4 g e t s (b u f f e r) ;
5 }
6
7 in t main (void) {
8 unsa f e () ;
9 return 0 ;
10 }

Suppose that ASLR is enabled, and no other memory safety defenses are enabled.
As before, you run GDB and discover that the address of buffer is 0x3a9d2800.
Consider the following exploit: 'A' * 12 + '\x10\x28\x9d\x3a' + SHELLCODE.
What is the approximate probability that the above exploit will cause malicious shellcode to execute
on any given execution of the program?

0

1/232

1/216

1/24

1/2

1

Solution: The main difference here is that the buffer has been relocated to static memory.
Overflowing the buffer in static memory will not overwrite the RIP of any function, so this
exploit will almost certainly not cause the shellcode to execute.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 17 of 29 CS 161 – Spring 2022

Q6.7 (2 points) Generally, if an exploit succeeds with probability 1/220, an attacker might try the exploit
220 times until it succeeds. However, whether an attacker is willing to try 220 times depends on
whether the code has a timeout after each failed attempt, and whether the code is even worth
attacking in the first place.
Which security principle or example is most relevant to this situation?

Least privilege

Don’t rely on security through obscurity

Fail-safe defaults

Know your threat model

Time-of-check to time-of-use

Solution: Thinking about an attacker’s capabilities and motivations is related to knowing
your threat model. One threat model may allow an attacker to try 220 times, and another may
not.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 18 of 29 CS 161 – Spring 2022

Q7 Robin (29 point)
Consider the following code snippet:

1 void r ob in (void) {
2 char buf [1 6] ;
3 in t i ;
4
5 i f (f r e a d (& i , s i z eo f (in t) , 1 , s t d i n) != 1)
6 return ;
7
8 i f (f g e t s (buf , s i z eo f (bu f) , s t d i n) == NULL)
9 return ;
10
11 _________
12 }

Clarification issued during exam: fread returns the number of members read. fgets returns NULL if
an error occurs.
Clarification issued during exam: If you put “possible,” writing “not needed” for a line means that any
input to that line would work for the exploit.
Assume that:

• There is no compiler padding or additional saved registers.
• The provided line of code in each subpart compiles and runs.
• buf is located at memory address 0xffffd8d8
• Stack canaries are enabled, and all other memory safety defenses are disabled.
• The stack canary is four completely random bytes (no null byte).

For each subpart, mark whether it is possible to leak the value of the stack canary. If you put possible,
provide an input to Line 5 and an input to Line 8 that would leak the canary. If the line is not needed
for the exploit, you must write "Not needed" in the box.
Write your answer in Python 2 syntax (just like in Project 1).

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 19 of 29 CS 161 – Spring 2022

Q7.1 (3 points) Line 11 contains printf("%x", buf[i]);.
Clarification during exam: This question part has been dropped. Everyone will receive points on
this question part.

Possible Not possible

Line 5:

Solution: N/A (intended to be '\x10\x00\x00\x00')

Line 8:

Solution: N/A

Solution: This was intended to be a simple out-of-bounds memory read by passing in i
== 16. However, when clarifications for this question came in, we realized that this doesn’t
actually work: buf is a char array, so indexing into buf[i] returns only a single character.
This character would then be cast to a 4-byte argument, but it still only contains the byte in
the least-significant position.
Technically, the solution is “Not possible,” but because the knowledge needed for this question
was ultimately not what we intended to test, the question part was dropped.

Q7.2 (3 points) Line 11 contains printf("%s", buf[i]);.
Clarification during exam: This question part has been dropped. Everyone will receive points on
this question part.

Possible Not possible

Line 5:

Solution: Not possible (intended to be '\x00\x00\x00\x00')

Line 8:

Solution: Not possible (intended to be '\xe8\xd8\xff\xff)

Solution: As before, the intent was for the student to set up buf[i] to contain the address
of the canary so that %s would dereferencing the expected string and leak the value of the
canary. However, because buf[i] only returns a single byte, the resulting pointer will always
be (probably) invalid with only the lowest byte set and the top three bytes set to NULL.
Technically, the solution is “Not possible,” but because the knowledge needed for this question
was ultimately not what we intended to test, the question part was dropped.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 20 of 29 CS 161 – Spring 2022

Q7.3 (3 points) Line 11 contains gets(buf);.

Possible Not possible

Line 5:

Solution: N/A

Line 8:

Solution: N/A

Solution: There’s not much we can do here as an attacker: there’s no way to execute arbitrary
shellcode to leak the canary, because we’d have to bypass the canary somehow; and there’s no
way of leaking the canary value directly as there are no read commands, only write commands.

Q7.4 (3 points) Line 11 contains printf("%s", buf);.

Possible Not possible

Line 5:

Solution: Not possible

Line 8:

Solution: Not possible

Solution: There’s not much we can do here as an attacker: fread and fgets are used
correctly, and we’ve safely escaped our printf call here.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 21 of 29 CS 161 – Spring 2022

Q7.5 (5 points) For this subpart only, enter an input that allows you to leak a single character
from memory address 0xffffd8d7. Mark “Not possible” if this is not possible. Line 11
contains printf("%c", buf[i]);.

Possible Not possible

Line 5:

Solution: '\xff\xff\xff\xff'

Line 8:

Solution: Not needed

Solution: We can set i to -1 to read a value one byte below the buffer. We know that -1 is
0xffffffff in two’s complement, so we just enter that for the integer.

Q7.6 (6 points) Line 11 contains printf(buf);.

Possible Not possible

Line 5:

Solution: Not needed

Line 8:

Solution: '%c%c%c%c%c%x'

Solution: This is just a simple format string attack: We just need to walk our way up the
stack using %c specifiers until we reach canary, at which point we can dump the value of the
canary using a %x.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 22 of 29 CS 161 – Spring 2022

Q7.7 (6 points) Line 11 contains printf(i);.

Possible Not possible

Line 5:

Solution: Approach 1: '\xe8\xd8\xff\xff'
Approach 2: '\xd8\xd8\xff\xff'

Line 8:

Solution: Approach 1: Not needed
Approach 2: '%c%c%c%c%c%x'

Solution: The first option is simple: Use the integer as a pointer directly to the stack canary,
which causes it to be leaked since it’s contents will be treated as the format string and directly
printed out (since it’s unlikely for it to contain a format specifier).
The second option is identical to the previous subpart, except for the fact that we’re printing i
instead of buf - as such, we need to set this up such that i is a pointer to the format string
specifier, which resides at buf. We can do this by setting i to this address, so that when it’s
passed into printf, it’s treated identically to passing in buf directly.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 23 of 29 CS 161 – Spring 2022

Q8 Copperhead (26 point)
Consider the following vulnerable C code:

1 s t ruc t v t a b l e {
2 void (∗ h i s s) (void) ; / / f u n c t i o n p o i n t e r
3 void (∗ snack) (void) ; / / f u n c t i o n p o i n t e r
4 void (∗ b i t e) (void) ; / / f u n c t i o n p o i n t e r
5 } ;
6
7 s t ruc t snake {
8 char name [1 6] ;
9 s t ruc t v t a b l e ∗ v t a b l e _ p t r ;
10 } ;
11
12 void s n a k e _ b i t e (void) { p r i n t f (" ouch ! \ n ") ; }
13 void v i p e r _ b i t e (void) { p r i n t f (" ouch + venom ! \ n ") ; }
14
15 in t main (void) {
16 s t ruc t v t a b l e s n ak e _v t a b l e = { NULL , NULL , s n a k e _ b i t e } ;
17 s t ruc t v t a b l e v i p e r _ v t a b l e = { NULL , NULL , v i p e r _ b i t e } ;
18 s t ruc t snake copperhead ;
19 char venom [3 2] ;
20 in t i ;
21
22 / ∗ Make c o pp e r h e ad . ∗ /
23 copperhead . v t a b l e _ p t r = &v i p e r _ v t a b l e ;
24 f g e t s (venom , s i z eo f venom , s t d i n) ;
25 for (i = 0 ; i <= 1 6 ; i ++) {
26 copperhead . name [i] = venom [i] ;
27 }
28
29 copperhead . v t a b l e _ p t r −> b i t e () ;
30
31 return 0 ;
32 }

Assume you are on a little-endian 32-bit x86 system. Assume that there is no compiler padding or saved
additional registers in all questions. Assume there are no memory safety defenses enabled.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 24 of 29 CS 161 – Spring 2022

Q8.1 (5 points) Fill in the following stack diagram, assuming that the program is paused at Line 22.
There are no extra rows. Each row should contain one struct member or variable from the following
(not all options will be used):

copperhead.name copperhead.vtable_ptr address of fgets

i address of printf snake_vtable.bite

snake_vtable.hiss snake_vtable.snack venom

viper_vtable.bite viper_vtable.hiss viper_vtable.snack

Stack

RIP of main

SFP of main

Solution:
RIP of main
SFP of main

snake_vtable.bite

snake_vtable.snack

snake_vtable.hiss

viper_vtable.bite

viper_vtable.snack

viper_vtable.hiss

copperhead.vtable_ptr

copperhead.name

venom

i

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 25 of 29 CS 161 – Spring 2022

Q8.2 (3 points) Which of the following lines contains a memory safety vulnerability?

Line 12

Line 16

Line 19

Line 23

Line 24

Line 25

Solution: The vulnerable line of code is Line 25 as there is a <= operator which will cause an
off-by-one vulnerability.
Line 12 is not vulnerable as it is a function definition and the printf statement inside of the
function does not take any arguments from the attacker.
Line 16 is not vulnerable as it simply is the initialization of the struct vtable.
Line 19 is not vulnerable as it is the initialization of the venom array.
Line 23 is not vulnerable as it is setting the vtable_ptr to point to the address of
viper_vtable.
Line 24 is not vulnerable as the length of the input to venom is controlled by the fgets
statement, so we cannot overflow venom.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 26 of 29 CS 161 – Spring 2022

Q8.3 (10 points) Assume that, at Line 22, the value of the ESP is 0xffff9308. Provide an input to
the program that will cause a malicious 8-byte shellcode to be executed. You may reference the
variable SHELLCODE in your exploit. Write your answer in Python 2 syntax (just like in Project 1).

Solution: Off-by-one overwrites the LSB of copperhead.vtable_ptr, so we can trick the
program into thinking that the struct vtable exists at the start of the venom buffer. Based
on this, we can place a pointer to the shellcode at the location at which the program will look
for the bite function (eight bytes offset from the start of the vtable), and place the shellcode
in the remaining space that we have.

0xffff9348 [][][][] viper_vtable.bite
0xffff9344 [][][][] viper_vtable.snack
0xffff9340 [][][][] viper_vtable.hiss
0xffff933c [40 --> X = 0c][93][ff][ff] copperhead.vtable_ptr

0xffff9338 [][][][] copperhead.name
0xffff9334 [][][][] copperhead.name
0xffff9330 [][][][] copperhead.name
0xffff932c [][][][] copperhead.name

0xffff9328 [][][][]venom
0xffff9324 [][][][] venom
0xffff920 [][][][] venom
0xffff931c [][][][] venom

0xffff9318 ['A']['A']['A']['A'] venom
0xffff9314 [0c][93][ff][ff] venom [fake viper_vtable.bite]
0xffff9310 [SH][SH][SH][SH] venom [fake viper_vtable.snack]
0xffff930c [SH][SH][SH][SH] venom [fake viper_vtable.hiss]

0xffff9308 [][][][] i

answer: SHELLCODE + '\x0c\x93\xff\xff\' + 'A' * 4 + '\x0c'

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 27 of 29 CS 161 – Spring 2022

Q8.4 (3 points) Assume an attacker has successfully carried out the above exploit. At what point will
execution jump to shellcode?

When Line 24 is executed

When Line 26 is executed

When Line 29 is executed

When snake_bite returns

When viper_bite returns

When main returns

Solution: The basis of our exploit relied on changing the vtable_ptr to point to inside our
buffer, where it will interpret the 3rd word above the beginning of the pointer as the new
address of bite. Because the address of the bite function pointer now appears to be our
shellcode, it will execute when bite is called on line 29.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 28 of 29 CS 161 – Spring 2022

Q8.5 (5 points) Which of the following memory safety defenses would prevent an attacker from exe-
cuting the exploit above? Select all that apply.

Stack canaries

ASLR

Pointer authentication (assuming a 64-bit system)

Non-executable pages

Rewriting the code in a memory-safe language

None of the above

Solution: Stack canaries would not defend against out exploit since we are not overwriting
the rip. With this off-by-one vulnerability, we aren’t even able to reach the RIP.
ASLR and pointer authentication would protect against our exploit as there are no printf
vulnerabilities or magic numbers which would allow us to leak addresses.
Implementing non-executable pages would also protect against this exploit as we are writing
our shellcode into venom and copperhead.name, thus those segments of memory would be
non-executable. As a result we won’t be able to execute our malicious shellcode.
Rewriting the code in a memory-safe language should also prevent the exploit since it prevents
memory safety vulnerabilities.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 29 of 29 CS 161 – Spring 2022

