
Student ID:

This sheet will not be graded (feel free to write on it), but you must turn it in at the end of the exam.

C Function Definitions

int printf(const char *format, ...);

printf() produces output according to the format string format.

Conversion specifiers:
%hn The number of characters printed so far is stored into the 2-byte

short integer pointed to by the corresponding argument.
Outputs no bytes.

%n The number of characters printed so far is stored into the integer
pointed to by the corresponding argument.
Outputs no bytes.

%s String (pointer to a character array).
Outputs bytes until null terminator.

%c Character. Outputs 1 byte.
%x Hexadecimal. Outputs 8 bytes.

Each of the above conversion specifiers reads a 4-byte argument on the stack.

char *fgets(char *s, int size, FILE *stream);

fgets() reads in at most one less than size characters from stream and
stores them into the buffer pointed to by s. Reading stops after an EOF
or a newline. If a newline is read, it is stored into the buffer. A
terminating null byte ('\0') is stored after the last character in the
buffer.

General Exam Assumptions
Unless otherwise specified, you can assume these facts on the entire exam:

• Memory safety:
– You are on a little-endian 32-bit x86 system.
– There is no compiler padding or saved additional registers.
– If stack canaries are enabled, they are four completely random bytes (no null byte).
– You can write your answers in Python syntax (as seen in Project 1).

• Cryptography:
– The attacker knows the algorithms being used (Shannon’s maxim).
– ∥ denotes concatenation.
– H refers to a secure cryptographic hash function.



Valentines’ Day: Code
Below is the code and the stack diagram in the Valentine’s Day question, repeated for your convenience.

1 typedef s t ruc t message {
2 char ∗ p t r ;
3 char t e x t [ 6 4 ] ;
4 } message_t ;
5
6 typedef s t ruc t r e p l y {
7 char ∗ p t r ;
8 char t e x t [ 8 ] ;
9 } r e p l y _ t ;
10
11 void v a l e n t i n e ( ) {
12 r e p l y _ t coda ;
13 coda . p t r = &( coda . t e x t [ ____ ] ) ;
14 f g e t s ( coda . p t r , 5 , s t d i n ) ;
15 }
16
17 void main ( ) {
18 message_t evan ;
19 r e p l y _ t bo t ;
20 f g e t s ( evan . t e x t , 6 4 , s t d i n ) ;
21 evan . p t r = &evan . t e x t [ 0 ] ;
22 v a l e n t i n e ( ) ;
23 }

This diagram is ungraded.

RIP of main

SFP of main

canary

(1)

(2)

(3)

bot.ptr

RIP of valentine

SFP of valentine

(4)

(5)

(6)

Cake Without Pan: Diagram
Below is the stack diagram in the Cake Without Pan question, repeated for your convenience.

Address Value

0xffff1248: 0x12345678 −→ "evanbot"

0xffff1244: 0xffff1234

0xffff1240: 0xdabbad04 −→ 0x00000041

0xffff123c: 0xdeadbeef

0xffff1238: 0xffff1250

0xffff1234: 0x1234001d −→ "pancaketasty"

0xffff1230: &buf

0xffff122c: RIP of printf

0xffff1228: SFP of printf

CS 161 Spring 2023 Midterm Appendix


