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Print your name: ,
(last) (first)

Print your student ID:

There are 7 questions of varying credit (150 points total).

Question: 1 2 3 4 5 6 7 Total
Points: 2 28 23 23 24 28 22 150

For questions with circular bubbles, you may select only one choice.
Unselected option (completely unfilled)
Only one selected option (completely filled)

For questions with square checkboxes, you may select one or more choices.
You can select
multiple squares (completely filled)

Pre-exam activity (not graded, just for fun):
Look, a shooting star deorbited satellite! What will you
wish for?

Q1 Honor Code (2 points)

Read the following honor code and sign
your name.

I understand that I may not collaborate
with anyone else on this exam, or cheat
in any way. I am aware of the Berkeley
Campus Code of Student Conduct and ac-
knowledge that academic misconduct will
be reported to the Center for Student Con-
duct and may further result in, at mini-
mum, negative points on the exam.

Sign your name:
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Q2 True/False (28 points)
Each true/false is worth 2 points.

For the next 2 subparts: Tired of biased referees, the Caltopia Sports Association (CSA) is now using
EvanBot to officiate the upcoming games.

Q2.1 All changes to EvanBot’s programming are logged in a secure file for auditing.

True or False: This is an example of detecting if you can’t prevent.

(A) True (B) False

Solution: True. If an attacker changes EvanBot’s behavior, even if we can’t prevent it, we
can at least log evidence of the attack happening so that we can recover from the attack later.

Q2.2 CSA officials and team coaches are given full read/write access to EvanBot’s programming to audit
and ensure fairness.

True or False: This is an example of separation of responsibility.

(A) True (B) False

Solution: False. Separation of responsibility involves requiring two parties to collaborate to
exercise a privilege. There is no such case of two parties collaborating here.

The most relevant principle here is actually least privilege; officials and coaches probably don’t
need full read/write access to Bot’s programming for auditing. Read access would be sufficient.

For the next 2 subparts: You run x/4wx buf and receive the following GDB output:

0xffff1244: 0x00ab0000 0x00000000 0x00000033 0xff000000

Q2.3 True or False: Byte 0xab appears at address 0xffff1246 in memory.

(A) True (B) False

Solution: True. Recall that the system is little-endian, so the least-significant byte (right-most
two digits) of 0x00ab0000 are stored in the lowest address of memory, and themost-significant
byte (left-most two digits) are stored in the highest address in memory.

The address of the word 0x00ab0000 is 0xffff1244, and 0xab is the third-least-significant
byte in this word.
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Q2.4 Suppose buf is a local variable defined in function foo.

True or False: It is possible that the address of foo’s RIP is 0xffff1260.

(A) True (B) False

Solution: True. From this output, we can conclude that buf is at address 0xffff1244. It’s
plausible that the address of this stack frame’s RIP is slightly higher up at 0xffff1260.

Q2.5 Recall the off-by-one exploit from the project.

True or False: Without any modifications, this exploit will crash the program if stack canaries are
enabled.

(A) True (B) False

Solution: True. The exploit will overwrite the byte directly above the buffer, which used to
be part of the SFP but would not be part of the canary. Changing the canary will crash the
program.

Q2.6 An attacker writes "rm -rf /" into memory and calls the system function with this string as an
argument.

True or False: Non-executable pages will stop this attack because "rm -rf /" was written to a
non-executable part of memory.

(A) True (B) False

Solution: False. "rm -rf /" is not being interpreted as executable instructions in Cmemory;
it’s a string being passed to the shell.

For the next 2 subparts: Alice and Bob share a symmetric keyK not known to anyone else. Alice sends
these two values to Bob:

M and SHA-2(M∥K)

Q2.7 True or False: A MITM can modify the messageM to be some arbitrary amount of their choosing,
without being detected.

(A) True (B) False

Solution: Although hashes in general don’t provide integrity, this particular setup is not
trivially forgeable. The main attack we’ve talked about in this class regarding SHA-2 is a
length extension attack, but this attack would not be useful here, because an extended hash
output like SHA-2(M∥K∥M ′) would not be a valid tag for any message.
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Q2.8 True or False: A MITM can modify the message M to be some different amount (not necessarily
of their choosing), without being detected.

(A) True (B) False

Solution: As in the previous subpart, there is no way for an attacker to exploit the length
extension attack we’ve seen in order to forge a valid tag for any message that’s different from
M .

Also, note that the question mentions that Alice is sending just one message to Bob, so there
is also no way to replay an old message hashed withK .

For the next 3 subparts: You perform a Diffie-Hellman key exchange with EvanBot over an insecure
channel. You use a randomly-generated secret a, but EvanBot uses b = 0.

Q2.9 True or False: You and EvanBot will derive the same shared secret.

(A) True (B) False

Solution: The intended answer was true. You derive (g0)a = g0 = 1 mod p. EvanBot derives
(ga)0 = g0 = 1 mod p.

However, if you assumed that there was a MITM in the insecure channel, then it’s possible
that they interfere with your exchange and cause you and EvanBot to derive different secrets.
If you made this assumption, then the answer would be false.

Because we weren’t clear about whether a MITM is present in this question, we’ll accept both
True and False as correct answers.

Q2.10 True or False: An eavesdropper on the insecure channel can derive the shared secret.

(A) True (B) False

Solution: True. As seen in the previous subpart, the shared secret is always going to be
1 mod p.

Q2.11 True or False: An eavesdropper on the insecure channel can learn your shared secret a.

Clarification during exam: This question should read “An eavesdropper on the insecure channel
can learn your shared secret a.”

(A) True (B) False

Solution: False. The eavesdropper see g0 = 1 mod p and ga mod p exchanged over the
channel. However, because of the discrete-log problem, they cannot derive a from ga mod p.
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Q2.12 Consider a world where everyone uses Diffie-Hellman to exchange shared secrets, and then uses
those shared secrets to communicate with only symmetric-key cryptography.
True or False: In this world, there would be no benefit to introducing certificates.

(A) True (B) False

Solution: False. In this world, you have no idea who you’re talking to in any communication–
you could have done that Diffie-Hellman exchange with an attacker (e.g. if the exchange was
MITM’d). Certificates would solve this problem by providing signed attestations of the identity
of who you’re communicating with.

For the next 2 subparts: Consider the following certificate tree:

1. EvanBot (root of trust)
2. TAs (certificates signed by EvanBot)
3. Readers (certificates signed by a TA)

Q2.13 True or False: If an attacker compromises the private key of a reader, they can create a valid
certificate endorsing the attacker as a reader.

(A) True (B) False

Solution: The attacker would need to compromise the private key of TA in order to sign a
certificate endorsing the attacker as a reader. In this certificate tree, the private key of a reader
cannot be used to sign any certificates.

Q2.14 True or False: If the TA certificates issued by EvanBot expire every 24 hours, then both the TAs
and readers need to renew their certificates every 24 hours. Assume that renewing a certificate
involves creating a new public/private keypair.

(A) True (B) False

Solution: When the TA certificates expire, they need to generate new public keys. This means
the certificates on readers’ public keys are now invalid as well (because they were signed by
the old, expired TA public keys), so the readers also need new certificates signed by the new
TA keys.
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Q3 IND-CPA and Block Ciphers: evanbotevanbotevanbotevan... (23 points)
Consider a PRNG whose outputs repeat in a cycle of length 6:

. . . 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, . . .

Let ri denote the ith output from the PRNG. We don’t know the initial seed of this PRNG, but we do
know the first output (r0) will be an integer between 1 and 6 (inclusive). After initially seeding or
reseeding, the next output has an equal probability of being any of the 6 numbers.

Consider using this PRNG to build an encryption scheme:

Ci = EK(H(ri))⊕Mi

For each block we need to encrypt, we generate the next output ri from the PRNG, and compute Ci

using the equation above, where EK denotes AES encryption.

Here’s an example of this encryption scheme. If the first PRNG output will be 1, and we encrypt a
3-block message (M0,M1,M2), then the ciphertext (C0, C1, C2) would be computed as follows:

C0 = EK(H(1))⊕M0

C1 = EK(H(5))⊕M1

C2 = EK(H(4))⊕M2

Q3.1 (3 points) Write the decryption formula forMi.

Solution: Mi = Ci ⊕ EK(H(ri))

One simple way to derive this decryption equation is to XOR both sides with EK(H(ri)).

Q3.2 (4 points) Select all true statements about this scheme.

Clarification during exam: Pi refers toMi (the ith plaintext block) for this subpart.

(A) If an attacker flips the last bit of Ci, then the last bit of Pi will also be flipped.

(B) If an attacker flips the last bit of Ci, then Pi will become random-looking garbage.

(C) If an attacker flips the last bit of Ci−1, then the last bit of Pi will also be flipped.

(D) If an attacker flips every bit of Ci, then every bit of Pi will also be flipped.

(E) None of the above

Solution: Note that XOR works bitwise here: each bit of C is XORed with each bit of the
block cipher output EK(H(ri)) to compute each bit of P . Therefore, an attacker who flips
any bit of C will also cause the corresponding bit of P to be flipped.
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Q3.3 (3 points) For any two plaintext blocksMi andMj , which of the following conditions would cause
the corresponding ciphertext blocks to be equal (Ci = Cj)?

Clarification during exam: Select the least restrictive condition that would cause the corresponding
ciphertext blocks to be equal.

(A) Mi ̸= Mj , and i− j is a multiple of 6.

(B)Mi ̸= Mj , and i− j is exactly 6.

(C) Mi = Mj , and i− j is a multiple of 6.

(D)Mi = Mj , and i− j is exactly 6.

(E) There is no way to deduce that Ci =
Cj .

Solution: For any two plaintext blocksMi andMj , if i− j ≡ 0 mod 6 andMi = Mj , then
Ci = Cj .

The block cipher output repeats every 6 blocks, so if two plaintext blocks are a multiple of 6
blocks away from each other, they will be encrypted by being XORed with the same block
cipher output block. If the two plaintext blocks are equivalent, and they get XORed with the
same block cipher output, then the two ciphertext blocks will also be equivalent.

We can show this by writing an example:

C0 = EK(H(r0))⊕M0

C6 = EK(H(r6))⊕M6

But we know that r0 = r6 because of the PRNG’s repeating output. (If you’re not convinced,
check out the example PRNG output at the top of the question.) Therefore, the second equation
could be rewritten using r0 to be:

C0 = EK(H(r0))⊕M0

C6 = EK(H(r0))⊕M6

Now we can see that ifM0 = M6, then C0 = C6.

Generalizing this, there was nothing special about using the indices 0 and 6, except for the
fact that they were a multiple of 6 apart (so that we could apply the r6 = r0 property of the
PRNG).
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To show this scheme is insecure, you want to provide a strategy that always wins the IND-CPA game.

Adversary (you) Challenger

M andM ′

C

Q3.4

(C0, C1, C2, . . .)

GuessM or M ′

Challenge phase:
First, the adversary (that’s you!) sends two different challenge
messages, M ̸= M ′, to the challenger. For your strategy, you
can assume bothM andM ′ are one block long.

The challenger randomly picks one of M or M ′ to encrypt. The
resulting one-block ciphertext C is returned to you.

Query phase:

You send one multi-block query message to the challenger...

...and you receive the encryption of that query message.

Finally, you will guess whether M or M ′ was sent (see Q3.5).

Q3.4 (3 points) In general, you can ask the challenger to encrypt multiple query messages in the query
phase. However, in your strategy, you only need to ask the challenger to encrypt one query
message.

Which of these choices of query message would work in your strategy? Select all that apply.

(Note: 0 is a block of all zeroes.)

(A) (M,M ′)

(B) (0, 0, 0, 0, 0, 0)

(C) (0,M,M ′)

(D) (0, 0, 0, 0)

(E) (M,M,M,M,M,M)

(F) (M ′,M ′,M ′,M ′,M ′,M ′)

Solution: Suppose the challenger randomly encryptsM . Then the returned one-block cipher-
text will be C = EK(H(r0))⊕M . The only value that we don’t know here is EK(H(r0)),
because the block cipher output is unpredictable withoutK .

However, we can at least narrow down the possible values. Note that there are only 6 possible
outputs of the block cipher: EK(H(1)), EK(H(2)), . . . , EK(H(6)). If we know all six of
these values, then we can XOR the ciphertext with these values to see if any of the resulting
plaintext values matchesM .

To determine what to send in our query phase, note that any message that is at least 6 blocks
will let us figure out Ek(H(i)) for all 1 ≤ i ≤ 6. We’d just need to XOR out our message from
the returned ciphertext to receive the block cipher outputs.

For example, if we send (1, 1, 1, 1, 1, 1), we receive EK(H(i))⊕ 1 for all 1 ≤ i ≤ 6. Then we
can XOR out the 1 to receive EK(H(i)) for all 1 ≤ i ≤ 6.

Now, you just have to compute EK(H(i))⊕M for all 1 ≤ i ≤ 6. If the ciphertext matches
one of the 6 messages you computed, thenM was encrypted; otherwise,M ′ was encrypted.
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Q3.5 (6 points) Describe the strategy that you will use to win the IND-CPA game.

In the query phase, the message you sent to the challenger is:

(Write one of the answers you selected in the previous subpart. All the answers you selected
should work, but just pick one here to use in your strategy.)

Solution: You can write any of the options you selected from the previous subpart in this
box, and then use it in your strategy below. Writing a valid answer here is not worth credit;
it’s just for reference of what you plan to use in your strategy later.

Note that the three correct answer choices lead to cleaner strategies for winning the IND-CPA
game (as we’ll show below).

Sending (0, 0, 0, 0, 0, 0) will give us back EK(H(i)) for 1 ≤ i ≤ 6, because XORing the block
cipher output with 0 doesn’t change it.

Sending (M,M,M,M,M,M) will give us back EK(H(i))⊕M for 1 ≤ i ≤ 6. This exactly
corresponds to the six possible ways thatM could have been encrypted.

Likewise, sending (M ′,M ′,M ′,M ′,M ′,M ′) will give us back the six possible ways that M ′

could have been encrypted.

The challenger encrypts the message you wrote in the box above and returns (C0, C1, C2, . . .).

Explain how you would determine whetherM or M ′ was encrypted, using:

• M andM ′ from the challenge phase,
• the encryption C from the challenge phase (C is either the encryption ofM orM ′), and
• the encryption of the message you wrote in the box above (C0, C1, C2, . . .).

An example of how you could describe your strategy, that has nothing to do with this question:
If C equals C1 ⊕ 161 or C2 ⊕ C5, guess M . Else, guessM ′.

Solution: Example answer 1:

First box: (0, 0, 0, 0, 0, 0)

Strategy: If C matches one of C0 ⊕M,C1 ⊕M, . . . , C6 ⊕M , guessM . Else, guessM ′.

Explanation: In this strategy, the query phase returns (C0, . . . , C6) =
(EK(H(r0)), . . . , EK(H(r6))), i.e. all six possible block cipher outputs. We know
that M or M ′ was XORed with one of these six block cipher outputs, so we just have to XOR
M with each of these six possible outputs and see if any of them match the ciphertext given
back to us.

See below for example answers 2 and 3.

Midterm - Page 9 of 30



Q3.6 (4 points) In general, what must be true about the query message (from Q3.4) in order for this
strategy to work? You can answer in 10 words or fewer.

Solution: It must be 6 blocks or longer.

In short, you need at least 6 blocks in your query messages, so that from the returned ciphertext,
you can extract all six possible block cipher outputs: EK(H(1)), EK(H(2)), . . . , EK(H(6)).

See previous subparts for more details.

Note: In this question, it actually doesn’t matter whether or not the PRNG is reseeded after
every encryption. Regardless of the PRNG’s state at the start of the query phase, any query
input that’s at least 6 blocks will run through a full PRNG cycle and yield all 6 possible block
cipher outputs.

Solution:

Example answer 2:

First box: (M,M,M,M,M,M)

Strategy: If C matches one of C0, C1, . . . , C6, guessM . Else, guessM ′.

Explanation: In this strategy, the query phase returns

(C0, . . . , C6) = (EK(H(r0))⊕M, . . . , EK(H(r6))⊕M),

i.e. the six possible ways in which M could have been encrypted. We just have to check if the
ciphertext matches one of the six possible encryptions of M to see if M was encrypted; if the
ciphertext doesn’t match any of the six possible encryptions, then M ′ must have been encrypted
instead.

Example answer 3:

First box: (M ′,M ′,M ′,M ′,M ′,M ′)

Strategy: If C matches one of C0, C1, . . . , C6, guessM ′. Else, guessM .

Explanation: This is the same strategy as the second answer, except we’ve reversed the roles of
M ′ and M . We receive the six possible ways where M ′ could have been encrypted, and see if the
ciphertext C matches one of those six possible encryptions. If we get a match, we knowM ′ must
have been encrypted; otherwise, we knowM must have been encrypted.
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Q4 Public-Key Cryptography: Mallory Forger (23 points)
Alice wants to securely send a number M to the bank, to tell the bank to send M dollars to Bob.
However, Mallory might try to read or tamper withM .

Assumptions:

• Both the bank and Alice have published, trusted RSA public keys denoted PKbank and PKalice,
respectively.

• There are too many possible values ofM for Mallory to try them all in a brute-force attack.
• Alice sends exactly one message to the bank.

Alice and her bank decide to use the RSA encryption scheme from class (no OAEP padding):

• Enc(PK,M) = M e mod N

• Dec(SK,C) = Cd mod N

e,N are from the RSA public key PK , d is the RSA private key SK , and C is the ciphertext to be
decrypted.

Clarification during exam: Enc refers to the RSA encryption scheme from the class (no OAEP padding).

Scheme 1: Alice sends Enc(PKbank,M).
Q4.1 (2 points) Can Mallory learn the value ofM?

(A) Yes (B) No

Solution: Without knowing the bank’s secret key, Mallory cannot decrypt this message.

A single RSA encryption does not leak information about the message. Mallory would need to
solve the factoring problem (which is assumed to be hard) to try and learn information about
this message without the secret key.

(If we used this scheme to send multiple messages, then the deterministic nature of RSA would
leak information, but the question says Alice only sends one message.)

Q4.2 (2 points) Can Mallory changeM without being detected?

(A) Yes, Mallory can changeM to any value of her choosing.
(B) Yes, but Mallory can only change M to a specific value (not necessarily of her choosing).
(C) No, Mallory cannot changeM .

Solution: In this case, nothing is stopping Mallory from computing Enc(PKbank,M
′) by

herself, since the bank’s public key is known by all, and anybody can encrypt messages with
the public key. Therefore, Mallory can cause the bank to send an arbitrary amount of money.
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Scheme 2: Alice sends Enc(PKbank,M) and H(M).
Q4.3 (2 points) Can Mallory learn the value ofM?

(A) Yes (B) No

Solution: The only difference in this scheme is the addition of the hash. Since this is a secure
cryptographic hash, there is no way to take H(M) and learn the value ofM .

Also, note that Mallory cannot brute-force all values of M , as stated in the question assump-
tions.

Q4.4 (2 points) Can Mallory changeM without being detected?

(A) Yes, Mallory can changeM to any value of her choosing.
(B) Yes, but Mallory can only change M to a specific value (not necessarily of her choosing).
(C) No, Mallory cannot changeM .

Solution: The addition of the hash does not stop the attack from Scheme 1.

Mallory can compute H(M ′) herself as well and attach it to the forged message with no
problems.

Midterm - Page 12 of 30



Alice and her bank decide to also use the simplified RSA signature scheme from class. This is similar
to the full RSA signature scheme from class, except the messageM is not being hashed:

• Sign(SK,M) = Md mod N

• Verify(PK,S,M) : check if Se ≡ M mod N

e,N are from the RSA public key PK , d is the RSA private key SK , and S refers to a signature output
by Sign.

Scheme 3: Alice sends C = Enc(PKbank,M) and S = Sign(SKalice,M).

Q4.5 (5 points) Can Mallory learn the value ofM?
(A) Yes (B) No

Describe (in words or equations) how Mallory learns M , or explain why Mallory cannot learnM .

Solution: Mallory can compute Se ≡ M mod N .

Remember that in discussion, we showed how RSA signatures without signatures is vulnerable
to recovery of the original message. Intuitively, in modN space, raising something to the d
power (secret key) “cancels out” raising something to the e power (public key), and vice-versa.
Formally, M ed ≡ M mod N .

In this simplified digital signature scheme, signing the message involves raising the message
to the d power. Mallory can “cancel out” this effect and retrieve M by raising the signature to
the e power (and Mallory knows e because it’s part of the public key). Formally, the signature
generated is:

S = Sign(SKalice,M) = Md mod N

Mallory can compute:

Se ≡ (Md)e mod N ≡ M mod N

which gives Mallory the value ofM .
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Q4.6 (5 points) Can Mallory changeM without being detected?

(A) Yes, Mallory can changeM to any value of her choosing.
(B) Yes, but Mallory can only change M to a specific value (not necessarily of her choosing).
(C) No, Mallory cannot changeM .

Describe (in words or equations) howMallory changesM (and possibly S), or explain why Mallory
cannot changeM .

Solution: Like in discussion, Mallory can fix some S′ and find (S′)ea = M ′. She can then set
C = Enc(PKbank,M

′).

Alternate solution: Mallory can change C to C2 and S to S2.

Mallory cannot create a signature on any arbitrary message M ′, because Mallory does not
have Alice’s secret signing key.

However, let’s take a closer look at the RSA encrypted message:

C = M e mod N

(Here, e belongs to the bank’s public key.) Mallory could square this value and obtain

C2 = M2e mod N

which is the encryption of themodifiedmessageM2. This is similar to the El Gamalmalleability
attack we showed in lecture (where we multiplied the ciphertext by 2, which also multiplied
the plaintext by 2).

Next, let’s take a closer look at the RSA signature:

S = Md mod N

(Here, d belongs to Alice’s secret key.) Without knowing d, Mallory can compute

S2 = M2d mod N

which is a valid signature on the messageM2.
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Scheme 4: Alice sends C = Enc(PKbank,M) and S = Sign(SKalice, C).
Q4.7 (2 points) Can Mallory learn the value ofM?

(A) Yes (B) No

Solution: If Mallory tries the same attack from the previous scheme (raising the signature
to the e power), Mallory can recover C = (mebank mod Nbank) mod Nalice. However, this
does not help Mallory learnM . As discussed in Scheme 1, given the RSA encryption ofM ,
Mallory cannot learnM .

Note that S = Sign(SKalice, C) = (meb)da ̸= m mod N .

Q4.8 (3 points) Can Mallory changeM without being detected?

(A) Yes, Mallory can changeM to any value of her choosing.
(B) Yes, but Mallory can only change M to a specific value (not necessarily of her choosing).
(C) No, Mallory cannot changeM .

Solution: Both the normal and alternate solution attack from the previous scheme still works
here. If we tried the first solution, we could recover some C ′ and send that to the bank, but
cannot control C ′.

Alternate solution:

The bank’s encrypted message is C = M ebank mod N . Mallory can square this value and
obtain C2 = M2ebank mod N , the encryption ofM2.

The signature is S = Cdalice mod N . We can plug in C from the previous part to see that
S = M ebankdalice mod N . If we square this value, we obtain S2 = M2ebankdalice mod N . As
before, this is a valid signature on the messageM2.

Note: Be careful in this solution explanation not to confuse the bank and Alice’s public/private
key pairs. The bank has its own key pair with its own ebank and dbank. Alice also has her own
key pair with her own ealice and dalice, which are not the same as the bank’s values.
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Q5 Passwords and Integrity: alice161 (24 points)
Consider a password storage server, with the following assumptions:

• There areN users who each choose from a common pool ofN possible alphanumeric passwords.
• Usernames are unique. Passwords may not be unique.

Consider an attacker who is able to:

• Compute O(N) hashes
• Read and modify what is stored in the password database
• Perform offline brute-force attacks (but not online attacks)

Clarification during exam: Enc refers to an IND-CPA secure symmetric key encryption scheme.

Clarification during exam: Assume that an attack is possible only if an attacker can do it without being
detected by the server.

Scheme 1: For each user, the server stores the username and these two values:

H(password) and Sign(SK,H(password))

Sign is a secure digital signature scheme, and SK is a key known only by the server.

Q5.1 (3 points) In Scheme 1, is the attacker able to determine all pairs of users who share the same
password?

(A) Yes, without computing any hashes
(B) Yes, but only by computing O(N) hashes
(C) No

Solution: The passwords aren’t salted and hashes are deterministic, so the attacker can simply
look at which users have matching hash outputs.

Q5.2 (3 points) In Scheme 1, how many users’ passwords is the attacker able to learn?

(A) None (B) Only one (C) All of them

Solution: The passwords aren’t salted, so the attacker only needs to do one O(N) dictionary
attack to learn all possible password hashes.

Then, for a given password hash, the attacker just has to look up that hash in their list of
hashed passwords to determine the original plaintext password.
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Q5.3 (3 points) In Scheme 1, what is the attacker able to do to a specific user’s password?

(A) Change the password to a specific value (not necessarily of the attacker’s choosing)
(B) Change the password to any value of the attacker’s choosing
(C) Nothing

Solution: Nothing associates a password with a username, so the attacker could swap records
in the database and change a user’s password to another user’s password.

However, the attacker could not change a user’s password to any value, because without SK ,
the attacker could not generate a valid signature on the attacker-chosen password.

Scheme 2: For each user, the server stores the username and

HMAC(K, username ∥ "161" ∥ password)

K is a key known only by the server.

Q5.4 (3 points) In Scheme 2, is the attacker able to determine all pairs of users who share the same
password?

(A) Yes, without computing any hashes
(B) Yes, but only by computing O(N) hashes
(C) No

Solution: No. The HMAC values will be unique per user, because the username is part of
the input, so the attacker cannot look for users with the same HMAC output value, as in the
previous scheme.

Also, the attacker cannot compute HMAC outputs without knowingK , so the attacker cannot
run any sort of brute-force attack to guess-and-check possible passwords.

Q5.5 (3 points) In Scheme 2, how many users’ passwords is the attacker able to learn?
(A) None (B) Only one (C) All of them

Solution: None. Without K , the attacker can’t compute HMACs of their own. Also, because
HMACs are based on hashes, the attacker can’t try to reverse the HMAC output to figure out
what the input to the HMAC was.
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For the rest of the question, consider this scheme:

Scheme 3: For each user, the server stores the username and these two values:

C = Enc(K1, username ∥ "161" ∥ password)

HMAC(K2, C)

Enc is an IND-CPA secure encryption scheme. K1 andK2 are secret keys known only by the server.

There are two ways a user can interact with the password server:

Create user: The user provides a new username and a new password. The server computes and stores
the two values above for the new user. The attacker is able to see these new values in the database.

Log in:

• The user provides their existing username and their password.
• The server first verifies the ciphertext C with the stored HMAC value.
• Then, the server decrypts C , and compares the decrypted plaintext with the string
username161password (replacing username and password with user-provided values).

• If the decrypted plaintext matches the user-provided string, the user is logged in.

The attacker is able to perform both of these operations, and read/modify the database at all times.

Clarification during exam: The attacker cannot create a user using an existing username.

Clarification during exam: The attacker is not able to modify the username of existing rows, nor can
they delete an entire row from the database.

Q5.6 (4 points) The database contains one user, with username alice161. The attacker does not know
their password.

Explain how the attacker could log in as alice161. You may not try to log in with all possible
passwords.

Hint: Try writing out what string will be encrypted for user alice161.

Solution: Short solution:

Create a new user with username alice and password 161known. This causes the server
to encrypt-and-MAC the string alice161161known. The attacker can see the resulting
ciphertext/MAC.

The attacker copies the encryption/MAC of alice161161known into alice161’s record.
Now the attacker can sign in with username alice161 and password known.

The key realization in this problem is that alice161’s record in the database will always be
the encryption/MAC of a string like alice161161... where the first 161 is from Alice’s
username and the second 161 is the delimiter added by the scheme. However, the attacker
could create a new user called alice and give this new user a password starting with 161...
which will also create the encryption/MAC of a string like alice161161.. (where now the
first 161 is the delimiter, and the second 161 is the start of the password).
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Q5.7 (5 points) The database contains one user, with username evanbot. The attacker does not know
their password.

Explain how the attacker could log in as evanbot. You may not try to log in with all possible
passwords.

Solution: Create a new user with username evanbot161 and password known. This causes
the server to encrypt-and-MAC the string evanbot161161known.

The attacker copies the ciphertext/MAC of evanbot161161known into evanbot’s record.
Now the attacker can sign in with username evanbot and password 161known.

The attack here is quite similar to the attack from the previous subpart, where we exploit
the fact that 161 could be either the delimiter, or part of the username/password. The string
evanbot161161known could be generated in two different ways:

Username evanbot161, password known. This is generated by the attacker creating a new
user.

Username evanbot, password 161known. The attacker tricks the server into using this inter-
pretation when signing in as evanbot.

Solution: Longer solution to Q5.6:

Long solution:

Following the hint: Suppose alice161’s password is unknown (and the attacker doesn’t know this
password). Then the string encrypted is alice161161unknown.

The attacker cannot decrypt the ciphertext to learn unknown. The attacker also can’t generate
valid HMACs on their own without knowingK2.

However, we notice that the attacker has the power to create new users, and see the resulting values
in the database. This means that if the attacker creates a new user, the server will encrypt-and-MAC
this new user’s username and password, and the attacker gets to retrieve the resulting ciphertext
and (valid) MAC for this new username/password pair!

Now, we have to use this create user power to generate a ciphertext/MAC that could be valid for
the user alice161. In other words, the string being encrypted must start with alice161161...
to match the username alice161 and the delimiter 161.

We can’t create a new user with the username alice161, because there can’t be duplicate users.
However, we could create a new user with the username alice. This would create a string starting
with alice161... where the 161 comes from the delimiter being added. Then, we could start out
our new user’s password with 161, so that the string starts with alice161161... as desired.
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Q6 Format Strings: Cake Without Pan (28 points)
For this entire question, each subpart is independent of the others.

Consider the following stack diagram after printf(buf) is called:

Stack

Address Value

0xffff1248: 0x12345678 −→ "evanbot"

0xffff1244: 0xffff1234

0xffff1240: 0xdabbad04 −→ 0x00000041

0xffff123c: 0xdeadbeef

0xffff1238: 0xffff1250

0xffff1234: 0x1234001d −→ "pancaketasty"

0xffff1230: &buf

0xffff122c: RIP of printf

0xffff1228: SFP of printf

How to read this diagram: Each row of the diagram represents a value on the stack, and if relevant,
the data located at that address (shown with arrows).

For example: at address 0xffff1234, you’ll find the address 0x1234001d. At address 0x1234001d,
you’ll find the null-terminated string pancaketasty.

Directions: For each subpart, provide an input to buf that performs the desired task.

• Your input can only contain percent formatters.
• Each blank can only contain exactly one of these formatters: c, hn, n, s, or x.
• Youmay not pad the output of a formatter (e.g. %5c is not permitted).
• You can assume that writing to any address will not crash the program.
• Not all blanks need to be used, but you may not use more blanks than provided.

Note: printf("%x", 0x1234001D) will output 1234001d. Notice how there is no prefixing 0x and
all letters are in lowercase.
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Q6.1 (6 points) Print a string containing evanbot. (The output can have other characters too, but
evanbot needs to be in the output.)

%c%c%c%c%c%s

Solution: For the entirety of these solutions, assume that arguments to printf are
zero-indexed. That is, &buf is its zero-th argument, 0x1234001d is its first argument,
0xffff1236 is its second argument, etc...

The %c formatters could be replaced with any other format string.

The only place in memory where the string "evanbot" appears is at address 0x12345678. On
the stack, we have a pointer to the string, located where printf would find its 6th argument.
Therefore, we need 5 percent formatters to skip past the first 5 arguments. Then, with the 6th
formatter, we use %s to dereference the pointer to the string and print out the string.

We do allow %s, %hn, and %n for each of the first five formatters and allow for the assumption
that all memory addresses on the stack dereference to valid memory locations.

Q6.2 (6 points) Write the integer 13 to address 0xdeadbeef.

%s%c%n

Solution: No alternate solutions that we know of.

The reasoning behind %n being the third percent formatter is the same as the previous subpart
(we need to skip past the first two arguments so that %n matches with 0xdeadbeef on the
stack).

This time, we need 13 characters to be outputted in total. Using two %xs or %cs will not be
enough to get us to 13 characters printed. However, note that the first argument on the stack,
0x1234001d, is a pointer to the string "pancaketasty" which is of length 12. Therefore, we
can match %s with the first argument to dereference the pointer and cause 12 characters to be
printed. Then, we can match %c with the second argument to cause 1 more character to be
printed (for a total of 13).

Any solutions that attempts to use %s on printf’s second argument will not work, because it
will attempt to dereference a pointer to the middle of the stack and print out values on the
stack starting with 0x1234, stopping when it encounters a null byte. However, this prints an
unknown number of bytes, as it is not known when the next null byte on the stack occurs.
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Q6.3 (6 points) Print a string containing exactly the capital letter A, and nothing else.

Remember that the hexadecimal ASCII value for the character A is 0x41.

%n%n%n%s

Solution: Only alternate solutions (that we know of): %hn and %n are interchangeable in the
given solution.

The only place where "A" appears in memory is at address 0xdabbad04. This is one of the
addresses on our stack. We want to use %s to dereference this value on the stack and print out
0x41 interpreted as a character, which is "A".

0xdabbad04 is the fourth argument on the stack, so we need three percent formatters before
the %s. Since we need exactly "A" to be printed, the first three percent formatters cannot
produce any output; therefore, %n is the only valid percent formatter to use here.

Note that this solution will indeed print exactly the character A, no more and no less. The %s
will not print out any extra bytes after A because the next byte in the integer 0x41 is a null
byte.

Also, note that the %n (or %hn) will no cause a segfault because each address that will be
dereferenced is a valid address in terms of this question.
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Q6.4 (10 points) For this subpart, suppose that after printf(buf) returns, you overwrite buf with
a second input, and then you immediately call printf(buf) again. The stack looks exactly the
same on the second printf call, except any changes to memory from the first call will carry over
to the second call.

You want the second printf call to output exactly caketasty and nothing else. It doesn’t matter
what the first printf call outputs.

Hint: What is the address of the string caketasty in memory?

Hint: Note that 0x20 is 32 in decimal.

First input to buf:

%x%x%x%x%hn%________

Second input to buf:

%s%________%________%________%________%________

Solution: No alternate solutions (that we know of).

To print exactly "caketasty", we need a pointer to the string "caketasty" somewhere on the
stack. However, we only have a pointer to the string "pancaketasty" on the stack.

Note that if 0x1234001d is the address of string "pancaketasty", then this is the address of the
letter "p" in memory. Therefore, 0x1234001d + 3 = 0x12340020 is the address of the letter
"c" in memory. We can use the first printf to change 0x1234001d in memory to 0x12340020,
creating a pointer to the string "caketasty" instead.

To change 0x1234001d in memory, we need a %n to match up with the address of 0x1234001d
on the stack. According to the GDB line, 0xffff1234 (the 5th argument on the stack) cor-
responds to the address that we want %n to match up with. (Note that 0xffff1234 isi the
address of the lower bytes 0x001d, and 0xffff1236 is the address of the upper bytes 0x1234.)

We want to change 0x001d to 0x0020, which means we need 0x20 = 32 bytes to be printed
in total. Also, we want four percent formatters to consume arguments so that the %n matches
with the 5th argument on the stack. The simplest (and probably only) way to print out 32
characters with four percent formatters is %x four times (each %x prints out 8 characters).

In summary, the first input needs to create a pointer to "cake" by incrementing the "pancake"
pointer. This is achieved by using four %x formatters to skip past four arguments and print 32
characters, and then a %hn to dereference the 5th argument and write 0x0020 into memory.

Now that the address 0x12340020 appears in memory, our second input just needs to derefer-
ence that address (the 1st argument on the stack) to print out "cake". This is achieved with a
single %s. Since we just want "cake" printed, no further format strings should be used.
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Q7 Memory Safety Exploit: Valentine’s Day (22 points)
EvanBot wrote a program to exchange valentines with CodaBot. Mallory got her hands on EvanBot’s
code, and wants to send a valentine that executes her shellcode and ruins Valentine’s day!

1 typedef s t ruc t message {
2 char ∗ p t r ;
3 char t e x t [ 6 4 ] ;
4 } message_t ;
5
6 typedef s t ruc t r e p l y {
7 char ∗ p t r ;
8 char t e x t [ 8 ] ;
9 } r e p l y _ t ;
10
11 void v a l e n t i n e ( ) {
12 r e p l y _ t coda ;
13 coda . p t r = &( coda . t e x t [ ____ ] ) ;
14 f g e t s ( coda . p t r , 5 , s t d i n ) ;
15 }
16
17 void main ( ) {
18 message_t evan ;
19 r e p l y _ t bo t ;
20 f g e t s ( evan . t e x t , 6 4 , s t d i n ) ;
21 evan . p t r = &evan . t e x t [ 0 ] ;
22 v a l e n t i n e ( ) ;
23 }

Stack at Line 13:

RIP of main

SFP of main

canary

(1)

(2)

(3)

bot.ptr

RIP of valentine

SFP of valentine

(4)

(5)

(6)

ASLR is enabled on the stack, but not in the code section. (In other words, the stack section is
moved on each run, but the code section stays in the same place.) Stack canaries are also enabled. No
other memory safety defenses are enabled.

Q7.1 (2 points) What values go in Blanks (1)-(3) in the stack diagram above?

(A) (1) - bot.text[8] (2) - evan.text[64] (3) - evan.ptr
(B) (1) - bot.text[8] (2) - evan.ptr (3) - evan.text[64]
(C) (1) - evan.text[64] (2) - evan.ptr (3) - bot.text[8]
(D) (1) - evan.ptr (2) - evan.text[64] (3) - bot.text[8]
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Q7.2 (2 points) What values go in Blanks (4)-(6) in the stack diagram above?

(A) (4) - coda.text[8] (5) - coda.ptr (6) - canary
(B) (4) - coda.text[8] (5) - canary (6) - coda.ptr
(C) (4) - canary (5) - coda.text[8] (6) - coda.ptr
(D) (4) - canary (5) - coda.ptr (6) - coda.text[8]

Solution:

RIP of main
SFP of main

canary
(1) evan.text[64]

(2) evan.ptr

(3) bot.text[8]

bot.ptr

RIP of valentine
SFP of valentine

(4) canary
(5) coda.text[8]

(6) coda.ptr
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Mallory runs GDB and finds some useful assembly in the executable. (Assume that all x86 instructions
are 4 bytes long.)

Clarification during exam: Some of the addresses had typos; they’re fixed in this version.

0x08988158: xor %ebx, %ebx
0x0898815c: mov %ebp, %esp
0x08988160: pop %edx
0x08988164: pop %ecx
0x08988168: pop %ebx
0x0898816c: pop %eax
0x08988170: pop %ebp
0x08988174: ret

Create an exploit that would cause this program to execute shellcode.

Hints (there’s no new information here, but it might give you ideas if you’re stuck):
• The pop instruction takes the lowest value (where the stack pointer register esp is pointing) off
the stack, and puts that value in the specified register. For example, pop %eax puts the lowest
value on the stack into register %eax. When a value is popped off the stack, the esp moves up by 4.

• The ret instruction behaves like pop %eip.

Q7.3 (5 points) What integer should go in the blank on Line 13?

Solution: 16

Note that whatever goes in the blank on Line 13 affects the value of coda.ptr, which in turn
affects where the fgets(coda.ptr, 5, stdin) call on Line 14 starts writing in memory.
We could put an unusually large value (i.e. greater than 8, the real size of text) in this blank,
which would cause fgets to write out-of-bounds!

In particular, we need the fgets call on Line 14 to start writing after the stack canary. If
fgets started writing below the stack canary, it might clobber out the value of the canary
and crash the program. To write above the canary, we’d like coda.ptr to point somewhere
after the stack canary.

The fgets call can only write 4 bytes to memory. The most useful 4 bytes to overwrite here
are the RIP of valentine, so we’d like coda.ptr to point to the RIP of valentine.

&coda.text[16] is the address of the RIP of valentine, so the index we’re looking for is 16.

We tried to design this question so that even if you didn’t get the bulk of the exploit in the
next few subparts, you could use your intuition about defeating the stack canary to arrive at
16 as a useful number in the blank, because this numbers let us write to an RIP on the stack.
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Q7.4 (9 points) What should be the inputs to the two fgets calls?

You can use SHELLCODE to represent the 60-byte shellcode you want to execute.

Input to fgets in main, at Line 20:

Solution: SHELLCODE

By process of elimination, you have to put SHELLCODE here. It doesn’t fit in the other fgets
call, and it’s not in memory yet (so you have to put it in memory yourself).

fgets will read a total of 63 bytes of input from the user and write it into evan.text, so
technically we do have 3 more bytes here that we could write after shellcode. It turns out that
we won’t need them, though - keep reading to see that the rest of the solution doesn’t use this
space.

Input to fgets in valentine, at Line 14:

Solution: '\x68\x81\x98\x08'

Short solution: You need to pop 3 words off the stack (bot.ptr and the two words in
bot.text[8], and then execute a ret instruction that dereferences evan.ptr to execute the
shellcode.

By overwriting the RIP to point to 0x08988168, we cause 3 pops to execute, taking bot.ptr
and bot.text[8] off the stack, then a ret to execute, which dereferences evan.ptr.

Detailed solution below.

Q7.5 (4 points) Mallory runs GDB and discovers that the address of bot.text is 0xffff1234.

Can Mallory use this address to exploit this program?

(A) Yes (B) No

Briefly justify your answer. You can answer in 15 words or fewer.

Solution: ASLR changes addresses on the stack every time, so this address won’t be the same
on future runs of the program.

Solution: Detailed exploit solution:

Because we put 16 in the blank earlier, this fgets is going to start writing at the RIP of valentine.

We want to execute shellcode that lives at evan.text (since we put shellcode there with our last
fgets).

At this point, a good first step is to think about the steps of a buffer overflow exploit, and which

Midterm - Page 27 of 30



steps are being made difficult because of the code or the defenses. In this case, we know that we’re
eventually going to need the address of shellcode (aka address of evan.text). However, ASLR on
the stack is enabled, so this address changes every time! Luckily, we look at our stack diagram or
the code and notice that thanks to Line 21, the address of shellcode actually does appear on the
stack; it’s the value of evan.ptr.

In normal function execution, the program would never dereference evan.ptr and start executing
instructions there. However, we read through the reminders for inspiration and notice that we
could get this program to potentially execute a ret instruction. Remember: the ret instruction
takes a value on the stack, reads it as an address, and starts executing instructions at that address.
If we could force the program to execute ret, it might look on the stack, read evan.ptr as an
address, and start executing instructions at that address (aka our shellcode).

Our first attempt, recalling Project 1 Q7, might be to overwrite the RIP of valentine with the
address of ret. When the program returns from valentine, it will jump to this address and
execute the ret instruction. What will this do? It will take the next value on the stack, bot.ptr,
jump to that address, and start executing instructions there.

Unfortunately, the value bot.ptr isn’t the address of shellcode. In order to reach the address of
shellcode, we need to delete a few more values off the stack so that when the ret is executed, it
dereferences evan.ptr.

Reading through the reminders again, we see that the pop instruction is also available to us in
memory, and it seems useful to us because it will move ESP up by 4 and take a value off the stack.

After executing one ret, the program is going to jump to bot.ptr and move ESP up by 4. This
will make bot.text[0:4] the next lowest value on the stack. We can see that 8 bytes, or 2 word-
s/pointers, on the stack separate the new lowest value and the desired lowest value of evan.ptr.
These 2 values on the stack are bot.text[0:4] and bot.text[4:8]. We can’t repeatedly execute
ret instructions to remove these extra values off the stack to reach evan.ptr, but we can execute
the sequence of pop instructions to remove these values off the stack!

In particular, if the RIP of valentine points to the first pop instruction, then the program will
execute:

pop %ebx: Take bot.ptr off the stack, put its value in %ebx. We don’t care about the value in the
%ebx register, so this operation is harmless and useful for removing a value off the stack.

pop %eax: Take bot.text[0:4] off the stack, put its value in %eax. Again, we don’t care about
the value in %eax, so this operation is harmless and useful.

pop %ebp: Take bot.text[4:8] off the stack, put its value in %ebp. Again, we don’t care about
the value in the %ebp register, so this operation is harmless and useful.

ret: Take the next value on the stack, evan.ptr, off the stack, and jump to this address. Remember
that evan.ptr held the address of shellcode, so we’ve jumped to shellcode!

In summary:

Overwrite RIP of valentine with 0x08988168, the address of a pop-pop-pop-ret sequence of
instructions. When valentine returns, the program will jump to this address and execute three
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pop instructions and a ret instruction.

The first pop instruction takes bot.ptr off the stack. The second pop instruction takes bot.text[0:4]
off the stack. The second instruction takes bot.text[4:8] off the stack. The ret instruction deref-
erences evan.ptr, which is the address of shellcode, and starts executing instructions there.

Midterm - Page 29 of 30



Nothing on this page will affect your grade in any way.

Post-Exam Activity: Valentine
What was in EvanBot’s valentine to CodaBot? Draw it here!

Comment Box
Congratulations for making it to the end of the exam! Feel free to leave any final thoughts, comments,
feedback, or doodles here:
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