
CS 161
Spring 2024

Introduction to
Computer Security Final

Solutions last updated: Friday, May 10, 2024
Name:

Student ID:

This exam is 170 minutes long.

Question: 1 2 3 4 5 6 7 8 9 Total

Points: 0 10 13 15 13 11 17 11 10 100

For questions with circular bubbles, you may select only one
choice.

Unselected option (completely unfilled)
Only one selected option (completely filled)
Don’t do this (it will be graded as incorrect)

For questions with square checkboxes, you may select one or
more choices.

You can select
multiple squares (completely filled)

Anything you write outside the answer boxes or you cross out
will not be graded. If you write multiple answers, your answer is
ambiguous, or the bubble/checkbox is not entirely filled in, we will
grade the worst interpretation.

Pre-exam activity:
(Just for fun, not graded.)

Connect the dots to form a drawing!
(I wonder what the result will be...)

Bonus: Once you’re done, draw
something below it!

Q1 Honor Code (0 points)
I understand that I may not collaborate with anyone else on this exam, or cheat in any
way. I am aware of the Berkeley Campus Code of Student Conduct and acknowledge
that academic misconduct will be reported to the Center for Student Conduct and may
further result in, at minimum, negative points on the exam.

Read the honor code above and sign your name:

Final - Page 1 of 46

Q2 True/False (10 points)
Each true/false is worth 0.5 points.

Q2.1 The Caltopian Army designs a secure radio that encodes cryptographic keys into physical keys.
To access a specific secure channel, the user inserts a key with a corresponding color.

True or False: This is an example of Consider Human Factors.

True False

Solution: True. This is similar to the security keys example shown in lecture. By color-coding
physical keys, we’re making the system easier to use for the users.

Q2.2 EvanBook Inc. requires the approval of two separate engineers to unlock the server room.

True or False: This is an example of Shannon’s Maxim.

True False

Solution: False. This is an example of separation of responsibility.

Q2.3 True or False: Stack canaries are the same across different functions within the same program
execution.

True False

Solution: True (as seen in lecture).

Q2.4 True or False: AES-CBC is often said to act like a stream cipher.

True False

Solution: False. AES-CBC does not efficiently support encrypting new data as it streams
in, because input has to be padded. For example, assuming 16-bit blocks, if we have 20 bits
initially, we have to pad the input to 32 bits before encrypting. Then, if an additional 5 bits
arrive, there’s no efficient way to “continue” the AES-CBC algorithm and encrypt additional
data. (Instead, we would have to decrypt, un-pad, and re-encrypt and re-pad the message with
the additional bits encrypted.)

By contrast, AES-CTR does efficiently support encrypting additional data. We can continue
running AES encryption with successively higher counters to generate block cipher output,
and then perform a bitwise XOR with the additional data that has been streamed in.

Final - Page 2 of 46

Q2.5 True or False: An attacker expects to have to try 2196 different values to find a collision in a
256-bit secure cryptographic hash function.

True False

Solution: False. The attacker expects to have to try 2128 different values (see the birthday
paradox).

Q2.6 True or False: RSA keys are usually chosen to be either 128 or 256 bits long.

True False

Solution: False. RSA keys are usually 2048 bits or longer.

Q2.7 True or False: It is possible to have multiple valid certificates for a single website.

True False

Solution: True. Multiple certificate authorities can use their private keys to sign a message
endorsing the same website’s public key.

Q2.8 True or False: www.google.com and google.com have different origins under the Same-Origin
Policy.

True False

Solution: True. Same-origin policy runs on string matching, and www.google.com and
google.com are not an exact-string match.

Q2.9 True or False: CSRF tokens are often stored in cookies.

True False

Solution: False. CSRF tokens are not encoded in cookies. CSRF is vulnerable because the
browser automatically attaches cookies in requests, so CSRF tokens need to be stored elsewhere
in order to be an effective defense.

Final - Page 3 of 46

Q2.10 True or False: It is possible for a cookie to have both HttpOnly and Secure set to true.

True False

Solution: True. A common misconception is that HttpOnly means the message cannot be
sent over HTTPS, but this is false. HttpOnly means that Javascript cannot access the cookie.
Secure means that the cookie can only be sent over HTTPS. Both of these can be true at the
same time.

Q2.11 True or False: Stored XSS attacks are often more severe than reflected XSS attacks, because users
do not need to click on an attacker-controlled link in stored XSS attacks.

True False

Solution: True. Stored XSS does not require the user to click on a link crafted by the attacker,
since the XSS is stored on the server and could be displayed to the user on one of the server’s
pages.

By contrast, reflected XSS requires the attacker to place the malicious Javascript directly in
the link, which means the user needs to click on the malicious link crafted by the attacker to
execute the attack.

Q2.12 True or False: A MITM attacker can force the user’s browser to execute malicious JavaScript by
tampering with the HTTP response.

True False

Solution: True. HTML and Javascript are sent over HTTP, which is sent over the network
(TCP/IP). A MITM can change the HTML/Javascript as it’s being sent across the network,
which would cause the user to receive malicious Javascript. Also, recall that Javascript is
executed in the user’s browser, so the attacker can inject malicious Javascript and cause the
user’s browser to execute that Javascript.

Q2.13 True or False: ARP spoofing requires an off-path attacker to correctly guess the source port of
the ARP request sender.

True False

Solution: False. ARP spoofing works at the link layer, and ports are defined at the higher
transport layer.

Final - Page 4 of 46

Q2.14 True or False: The correct order of the DHCP handshake is: Client Discover, DHCP Acknowl-
edgement, Client Request, DHCP Offer.

True False

Solution: False. Without memorizing the steps, you can reason that the acknowledgement
comes last. You can also reason that the offer has to be acknowledged, so it cannot be the last
step.

The actual sequence of steps is: Discover, Offer, Request, Acknowledgement.

Q2.15 An attacker who manages to impersonate a WPA2 access point has full access to the contents of
the HTTPS requests from the network clients.

True False

Solution: False. HTTPS is end-to-end secure, so someone impersonating the WPA2 access
point cannot learn messages encrypted over HTTPS.

Q2.16 Every BGP AS requires a certificate signed by a certificate authority.

True False

Solution: False. As seen in the BGP spoofing attack, there isn’t really a way to verify the
identity of a BGP AS.

For the next two subparts, you are a consultant for a large corporation that wishes to install intrusion
detection equipment.

Q2.17 True or False: It would likely be cheaper to install a NIDS instead of installing HIDS.

True False

Solution: True. As seen in lecture, a NIDS is cheaper to install, because you only have to
install one system to protect the entire network.

Q2.18 True or False: Installing a NIDS would allow the corporation to easily inspect the contents of the
employees’ HTTPS requests.

True False

Solution: False. As seen in lecture, HTTPS is end-to-end secure, and the NIDS would be
unable to read messages encrypted over HTTPS.

Final - Page 5 of 46

Q2.19 True or False: Double spending on the Bitcoin network is only possible by stealing the private
key of another user.

True False

Solution: False. Double-spending can be achieved by controlling 51% or more of the com-
puting power, which allows the attacker to create a forged blockchain that is longer and
accepted as the true blockchain. This can allow the attacker to convince user A that the
original blockchain is correct, and convince user B that the forged blockchain is correct. The
two different blockchains could spend a single coin in two different ways, thus allowing the
attacker to double-spend a coin. Stealing a private key is not necessary for this attack, since the
attacker could double-spend their own coin (e.g. sign the transaction with their own private
key).

Q2.20 True or False: LLMs are vulnerable to prompt injection attacks because they generally cannot
distinguish between input and commands.

True False

Solution: True, as mentioned in the LLM lecture. LLMs can have a hard time telling inputs
and commands apart, which could allow an attacker to provide an input that’s interpreted as a
command.

(Note for future semesters: This lecture is not always taught in CS 161, but was taught in
Spring 2024.)

Q2.21 (0 points) True or False: EvanBot is a real bot.

True False

Solution: True. You've solved the past exams and seen the answer to this
already, haven't you?

Final - Page 6 of 46

Q3 Memory Safety: Everyone Loves PIE (13 points)
Consider the following vulnerable C code:

1 void cake () {
2 char buf [8] ;
3 char i npu t [9] ;
4 in t i ;
5
6 f r e a d (input , 9 , 1 , s t d i n) ;
7
8 for (i = 8 ; i >= 0 ; i − −) {
9 buf [i] = i npu t [i] ;
10 }
11 return ;
12 }
13
14 void p i e () {
15 char c ook i e s [6 4] ;
16
17 / / P r i n t s ou t t h e 4− by t e a d d r e s s o f c o o k i e s
18 p r i n t f ("%p " , &cook i e s) ;
19
20 f g e t s (cook i e s , 6 4 , s t d i n) ;
21 cake () ;
22 return ;
23 }

Stack at Line 6

RIP of pie

SFP of pie

(1)

RIP of cake

(2)

buf

(3)

i

Assumptions:

• SHELLCODE is 63 bytes long.
• ASLR is enabled. All other defenses are disabled.

Final - Page 7 of 46

Q3.1 (1 point) What values go in blanks (1) through (3) in the stack diagram above?

(1) &p (2) SFP of cake (3) SFP of printf
(1) cookies (2) SFP of cake (3) input
(1) cookies (2) SFP of cake (3) RIP of fgets
(1) RIP of printf (2) SFP of printf (3) input

Solution: Here’s the stack diagram. It’s not needed to solve this subpart, but to clarify later
solutions, we’ll label the addresses relative to the address of cookies (which is the one address
we know, because of the print statement).

&cookies + 68 RIP of pie
&cookies + 64 SFP of pie
&cookies cookies

&cookies - 4 RIP of cake
&cookies - 8 SFP of cake
&cookies - 16 buf

&cookies - 25 input

&cookies - 29 i

Q3.2 (1 point) Which vulnerability is present in the code?

Off-by-one
Format string vulnerability

Signed/unsigned vulnerability
Time-of-check to time-of-use

Solution: The big clue that an off-by-one attack exists is buf being 8 bytes, and input being
9 bytes. In particular, the for loop is iterating 9 times and causing 9 bytes of input to be
copied into the 8-byte buf array. This causes the byte directly after buf to be overwritten.

There’s no format string vulnerability, because in the one and only call to printf, the attacker
does not control the 0th argument where the percent formatters are placed.

There’s no signed/unsigned vulnerability, because the numbers in fgets and fread are
hard-coded, and i is never interpreted as an unsigned integer.

There is no time-of-check to time-of-use vulnerability, because the program never pauses
(which might cause an input to be correct at time-of-check but incorrect at time-of-use).

Final - Page 8 of 46

In the next two subparts, you will provide inputs to cause SHELLCODE to execute with high probability.

Let OUT be the output from the printf call on Line 18. Assume that you can slice this value (e.g.
OUT[0:2] returns the 2 least significant bytes of &cookies). You may also perform arithmetic on this
value (e.g. OUT[0:2] + 4) and assume it will be converted to/from the correct types automatically.

Q3.3 (2 points) Provide a value for the fgets call on Line 20.

Solution: SHELLCODE

Solution: buf and input cannot fit the 63-byte shellcode, so cookies is the only possible
place to put shellcode.

The fgets call writes at most 63 bytes into cookies, which means that after writing shellcode
here, there’s no more space to write anything else in cookies.

As we’ll see in the next subpart, there’s nothing else that needs to be placed in cookies to
complete the exploit.

Final - Page 9 of 46

Q3.4 (5 points) Fill in each blank with an integer to provide an input to the fread call on Line 6.

You must put an integer for every blank even if the final slice would be equivalent – for example,
you must put both "0" and "7" in the blanks for OUT[0:7], even though OUT[:7] is equivalent.

Note that the + between terms refers to string concatenation (like in Project 1 syntax), but the
minus sign in the third term refers to subtracting from the OUT[_:_] value.

'A'* + OUT[:] + (OUT[:] -)

Solution:

A*'4' + OUT[0:4] + (OUT[0:1] - 16)

The last blank can also be 25 instead of 16.

OUT prints the 4-byte address of cookies (which is where we put shellcode).

The for loop causes the 9 bytes of input to be copied into buf. This means that the byte
immediately after buf can also be overwritten. This byte is the LSB of the SFP of cake.

In the off-by-one attack (as seen in Project 1), we can overwrite the SFP of cake to point 4
bytes below the place where we put the address of shellcode.

We can overwrite the SFP to point at the address of buf. Then, 4 bytes after the start of buf,
we can write the address of shellcode.

The first 4 bytes of buf are garbage, then the next 4 bytes are OUT[0:4], the address of
shellcode. (Note that the slice here doesn’t do anything since the output is already 4 bytes, but
the question requires we put an integer in every blank.)

The 9th and final byte of input needs to change the SFP of cake to point at the address of buf.
Per the stack diagram, we calculated this to be 16 bytes below the address we leaked. Since we
can only overwrite a single byte, we slice out the LSB of the address of cookies, which is
OUT[0:1], and subtract 16 from this value.

OUT[0:1] - 25 also works (i.e. last blank could also be 25), since this would cause the SFP to
point at input. The first 4 bytes of input are also garbage, and the next 4 bytes of input are
also the address of shellcode, so this solution also works.

Final - Page 10 of 46

Q3.5 (2 points) Which of these defenses, if enabled by itself, would prevent the exploit (without modi-
fications) from working? For pointer authentication only, assume the program runs on a 64-bit
system.

Stack canaries

Non-executable pages

Pointer authentication

None of the above

Solution: Stack canaries: True. The off-by-one attack now overwrites the LSB of the canary,
instead of the LSB of the SFP.

Non-executable pages: True. The shellcode was written on the stack, so if non-executable
pages were enabled, it would not be possible to execute user-inputted code.

Pointer authentication codes would break the exploit, since we’re changing a pointer value
(SFP of cake) without modifying its corresponding pointer authentication code.

Final - Page 11 of 46

Q3.6 (2 points) Which of these variable values would cause the exploit to break?

RIP of pie = 0x10c3fa00

address of cookies = 0xffff5fc0

RIP of cake = 0x10237acf

SFP of cake = 0xffffcd04

Solution: Recall that the SFP of cake’s value is the address of the SFP of pie. If the SFP of
cake is 0xffffcd04, this means the address of the SFP of pie is 0xffffcd04, and the stack
looks like this:
0xffffcd08 RIP of pie
0xffffcd04 SFP of pie
0xffffccc4 cookies

0xffffccc0 RIP of cake
0xffffccbc SFP of cake (value 0xffffcd04)
0xffffccb4 buf

0xffffccab input

0xffffcca7 i

The value of the SFP of cake is 0xffffcd04. However, we want to overwrite this value with
the address of buf, which is 0xffffccb4. It is no longer possible to perform the off-by-one
exploit, since we have to change the 2 least-significant bytes in order to change the address
correctly.

At a high level, the problem here is that the LSB of the addresses were close to 0x00, which
caused the second-least significant byte to roll over, preventing the off-by-one exploit from
working.

If you try drawing out a similar stack diagram with the address of cookies’s value set to
0xffff5fc0:
0xffff6004 RIP of pie
0xffff6000 SFP of pie
0xffff5fc0 cookies

0xffff5fbc RIP of cake
0xffff5fb8 SFP of cake (value 0xffff6000)
0xffff5fb0 buf

0xffff5fa7 input

0xffff5fa3 i

we see that this is also broken, so both answers were accepted for credit. (This was not
originally intended as a right answer, but became correct after the size of cookies was
changed from 16 to 64.)

The two options with RIP values show addresses in the code section, which are irrelevant to
our exploit.

Final - Page 12 of 46

Q4 Memory Safety: Breaking Bot (15 points)
EvanBot has decided to manufacture an industrial amount of pancakes and has gone to Walter White
for help. Consider the following vulnerable C code:

1 typedef s t ruc t {
2 char name [1 2] ;
3 void (∗ t a s k) () ; / / t a s k i s a p o i n t e r t o a f u n c t i o n
4 } person ;
5
6 / ∗ imp l em en t a t i o n s no t shown ∗ /
7 void cook () { . . . } ;
8 void s e l l () { . . . } ;
9
10 void rv () {
11 person ∗ p ;
12 char ∗ fo rmula ;
13 char saved_name [1 2] ;
14
15 p = (person ∗) ma l l o c (s i z eo f (person)) ;
16 f g e t s (p−>name , 12 , s t d i n) ;
17 i f (s t rcmp (p−>name , " Wal ter ") == 0) {
18 p−> t a s k = cook ;
19 } e l se {
20 p−> t a s k = s e l l ;
21 }
22 s t r l c p y (saved_name , p−>name , 1 2) ;
23 f r e e (p) ;
24
25 formula = (char ∗) ma l l o c (1 7) ;
26 f g e t s (formula , 1 7 , s t d i n) ;
27
28 p−> t a s k () ;
29 }

Stack at Line 15

RIP of rv

(1)

(2)

(3)

saved_name

Assumptions:
• The heap starts at address 0x30000000 and grows upwards.
• malloc always allocates starting at the lowest possible address with enough free space.
• malloc always allocates the exact amount of memory required by its input, with no metadata.
• Your goal is to call system("/bin/sh"), which will spawn a shell.
• The function system is located in memory at address 0x08120161.
• The address of saved_name is 0xffffca10.
• Non-executable pages are enabled. All other defenses are disabled.

EvanBot says you should go re-read the assumptions before proceeding!

Final - Page 13 of 46

Q4.1 (1 point) What values go in blanks (1) through (3) in the stack diagram above?

(1) SFP of rv (2) p (3) formula
(1) SFP of rv (2) formula (3) p
(1) formula (2) p (3) RIP of cook
(1) formula (2) RIP of cook (3) SFP of cook

Solution: For the rest of the solution, we’ll draw out not just the stack, but also the heap here:

Stack:
0xffffca28 RIP of rv
0xffffca24 SFP of rv
0xffffca20 p (value: 0x30000000)
0xffffca1c formula (value: 0x30000000
0xffffca10 saved_name

Heap:

Address value after Line 15 value after Line 25
0x3000000c p->task formula[12:16]

0x30000008 p->name[8:12] formula[8:12]

0x30000004 p->name[4:8] formula[4:8]

0x30000000 p->name[0:4] formula[0:4]

Q4.2 (1 point) Which vulnerability is present in the code?

Off-by-one
Format string vulnerability

Signed/unsigned vulnerability
Use after free

Solution: The big clue that this is a use-after-free attack is the use of free on Line 23. In
particular, the block of heap memory that p is pointing at is freed on Line 23. But, at Line
28, we try to dereference p anyway to use that memory after it’s been freed. This will cause
issues, because Lines 25-26 have caused that same block of heap memory to be overwritten
with other (attacker-chosen) input.

There’s no off-by-one vulnerability in this code. The two calls to fgets both write in-bounds,
and the call to strncpy also writes in-bounds.

There’s no format string vulnerability. There’s no call to printf in the code.

There’s no signed/unsigned vulnerability. All numerical inputs throughout the code are
hard-coded.

Final - Page 14 of 46

Q4.3 (1 point) What address is stored in the variable formula after Line 25 is executed?

0xffffca10

0xffffca1c

0x30000000

0x30000010

Solution: After Line 15, the bytes between 0x30000000 and 0x3000000f (inclusive) are
used to store a person struct.

After Line 23, these bytes are freed up.

After Line 25, we call malloc again, the bytes between 0x30000000 and 0x30000010 (inclu-
sive) are used again to store a character array (that formula is pointing at).

Per the assumptions, malloc always allocates starting at the lowest possible address with
enough free space, which is why both allocations start allocating memory at 0x30000000.

Final - Page 15 of 46

In the next two subparts, provide inputs that would cause the program to execute system("/bin/sh").

If a part of the input can be any non-zero value, use 'A'*n to represent the n bytes of garbage.

Q4.4 (4 points) Input to fgets at Line 16:

Solution: "\x14\xca\xff\xff" + "/bin/sh"

First, note that Line 16 and Line 22 together allow the user to overwrite saved_name.

This input puts the argument "/bin/sh" at the bottom of the stack (saved_name), so that
the call to p->task() (overwritten to be system in the next part) will look for arguments
and find "bin/sh".

One thing we need to note is that string arguments are passed on the stack as pointers to
character arrays, so instead of directly writing "/bin/sh", we need to put this string elsewhere
in memory (e.g. later in saved_name), and then at the bottom of the stack, put the address of
the string, as shown below:

Address Variable Value at Line 28
0xffffca28 RIP of rv
0xffffca24 SFP of rv
0xffffca20 p 0x30000000

0xffffca1c formula 0x30000000

0xffffca14 saved_name[4:12] /bin/sh\x00

0xffffca10 saved_name[0:4] 0xffffca14

Now, when we call p->task() (which is pointing at system), we will start the protocol for
calling a function. Normally, the first step is to push arguments on the stack, but p->task()
passes in no arguments, so no arguments are pushed on the stack. However, we wrote
the "/bin/sh" argument on the stack in the same place the program would be looking for
arguments (the very bottom of the previous stack frame, before we create the new stack frame).

Then, we run the rest of the function prologue as normal, which will create a new stack frame
to execute system, with the arguments already written on the stack beforehand.

Note that unlike other exploits, we are not exploiting a function return by overwriting the RIP.
We are changing a function pointer so that it points at system, and allowing the program to
naturally call that function pointer, which causes system to be called using the usual calling
convention process (e.g. push arguments, function prologue, etc.).

Final - Page 16 of 46

Q4.5 (6 points) Input to fgets at Line 26:

Solution: 'A'*12 + "\x61\x01\x12\x08"

Solution: Remember from the first stack diagram that formula and p are both pointing at
the same block of memory in the heap. Therefore, this input to formula is actually allowing
us to overwrite p.

We overwrite the first 12 bytes with garbage, representing p->name in memory. Then, we
overwrite the last 4 bytes, representing p->task, with the address of system.

As a side note, Lines 17-21 and the ability to overwrite p->name and don’t do anything useful
for the attacker, since they have no control over what cook or sell actually do.

Q4.6 (1 point) Would it still be possible for your exploit to work (without modifications) if stack canaries
are enabled?

Yes, because the exploit writes around the canary to overwrite values above the canary.

Yes, because the exploit never tries overwriting values above the canary.

No, because we cannot leak the canary value before overwriting it.

No, because the least-significant byte of the canary is overwritten by a null byte.

Solution: Yes, the exploit is still possible, because we never overwrite above the local variables,
and the stack canary is located above the local variables.

In particular, note that none of the fgets or strncpy calls write out-of-bounds.

Q4.7 (1 point) Would it still be possible for your exploit to work with high probability (without modifi-
cations) if ASLR is enabled, assuming the code section is randomized?

Yes No

Solution: No. We needed to hard-code the address of system in our exploit, and the address
of system in memory would be different every time if ASLR is enabled (including the code
section).

Final - Page 17 of 46

Q5 Symmetric Cryptography: AES-ROVW (13 points)
EvanBot designs the AES-ROVW mode of operation as follows:

C1 = EK(P1 ⊕ IV1)⊕ IV2

Ci = EK(Pi ⊕ Ci−1)⊕ Pi−1 (for i ≥ 2)

Q5.1 (1 point) Select the decryption formula for Pi, for i ≥ 2.

Pi = DK(Ci−1 ⊕ Pi)⊕ Ci

Pi = DK(Ci ⊕ Pi−1)⊕ Ci−1

Pi = DK(Ci)⊕ Ci−1 ⊕ Pi−1

Pi = DK(Ci ⊕ Ci−1)⊕ Pi−1

Solution: Using algebra (XORing both sides, or decrypting both sides), we get:

Ci = EK(Pi ⊕ Ci−1)⊕ Pi−1

Ci ⊕ Pi−1 = EK(Pi ⊕ Ci−1)

DK(Ci ⊕ Pi−1) = Pi ⊕ Ci−1

DK(Ci ⊕ Pi−1)⊕ Ci−1 = Pi

Final - Page 18 of 46

Q5.2 (1 point) Select all true statements.

Encryption is parallelizable.

Decryption is parallelizable.

None of the above

Solution:

A is false. Looking at the encryption formula or the diagram, we see that computing Ci

requires knowing Ci−1.

B is false. Looking at the decryption formula or the diagram, we see that computing Pi requires
knowing Pi−1.

Q5.3 (3 points) Select all true statements.

AES-ROVW is IND-CPA secure if IV1 and IV2 are independently randomly generated.

AES-ROVW is IND-CPA secure if IV1 is randomly generated and IV2 = H(IV1).

AES-ROVW is IND-CPA secure if IV2 is randomly generated and IV1 = H(IV2).

None of the above.

Solution: This scheme looks most similar to AES-CBC, where we pass in a random IV before
the first block cipher encryption. This causes the block cipher output to be unpredictable, and
then we chain that unpredictable block cipher output into the input of the next block cipher.

In all three choices, IV1 is being randomly-generated (in C, we’re deriving IV1 by hashing
another randomly-chosen value), and IV1 is passed into the first block cipher input, so this
should intuitively cause all subsequent block cipher inputs/outputs to be unpredictable for an
attacker.

(This isn’t a formal proof, but the intuition you can use to approach the question in an exam
setting.)

Final - Page 19 of 46

Alice has a two-blockmessage (P1, P2). Alice encrypts thismessagewithAES-ROVW to get (IV1, IV2, C1, C2).

Mallory, a MITM attacker, intercepts Alice’s ciphertext (IV1, IV2, C1, C2), and Mallory knows the
original plaintext value (P1, P2).

Mallory wants to change the ciphertext to (IV ′
1 , IV

′
2 , C

′
1, C

′
2), such that when Bob receives the modified

ciphertext and decrypts it, he sees (P ′
1, P

′
2), a malicious message of Mallory’s choosing.

In the next four subparts, give the values for Mallory’s tampered ciphertext (IV ′
1 , IV

′
2 , C

′
1, C

′
2). Select

as many options as you need.

Q5.4 (2 points) IV ′
1 is equal to these values, XORed together.

For example, if you think IV ′
1 = P2 ⊕ C2, then bubble in P2 and C2.

IV1

IV2

P1

P2

P ′
1

P ′
2

C1

C2

Solution: IV ′
1 = IV1 ⊕ P1 ⊕ P ′

1

Q5.5 (2 points) IV ′
2 is equal to these values, XORed together.

IV1

IV2

P1

P2

P ′
1

P ′
2

C1

C2

Solution: IV ′
2 = IV2 ⊕ P2 ⊕ P ′

2

Q5.6 (2 points) C ′
1 is equal to these values, XORed together.

IV1

IV2

P1

P2

P ′
1

P ′
2

C1

C2

Solution: C ′
1 = C1 ⊕ P2 ⊕ P ′

2

An alternate solution (must also choose the alternate solution for 5.7): C ′
1 = C0 ⊕ P1 ⊕ P ′

2

Final - Page 20 of 46

Q5.7 (2 points) C ′
2 is equal to these values, XORed together.

IV1

IV2

P1

P2

P ′
1

P ′
2

C1

C2

Solution: C ′
2 = P ′

1 ⊕ C2 ⊕ P1

If the previous subpart chose the alternate solution: C ′
2 = P ′

1 ⊕ C1 ⊕ P0

Solution:

Since we’re dealing with P1 and P2 specifically, we can write down these two decryption formulas,
and manipulate the attacker-controlled terms IV1, IV2, C1, C2 such that the formulas output P ′

1

and P ′
2.

DK(C1 ⊕ IV2)⊕ IV1 = P1

DK(C2 ⊕ P1)⊕ C1 = P2

There are two twists that make this derivation kind of tricky:

First, C1 appears in both equations, so if we choose to tamper with C1 in one of the equations,
we’ll need to go to the other equation and plug in the modified C ′

1 and make any necessary fixes to
account for the modified C ′

1.

Second, P1 in the second equation comes from the P1 value that Bob decrypts using the first
formula, so when we tamper the first formula to output P ′

1, Bob will also be using P ′
1 in the second

equation.

We can XOR both sides of the first equation by P1 to “cancel out” P1. Then, we can XOR both sides
of the first equation by P ′

1 to “introduce” P ′
1:

DK(C1 ⊕ IV2)⊕ IV1 = P1

DK(C1 ⊕ IV2)⊕ IV1 ⊕ P1 ⊕ P ′
1⏞ ⏟⏟ ⏞

IV ′
1

= P1 ⊕ P1 ⊕ P ′
1

= P ′
1

Matching terms between the original and modified equation, we see that both are equal if we set
IV ′

1 = IV1 ⊕ P1 ⊕ P ′
1. This answers Q5.4.

Now, we can use a similar trick to change P2 to P ′
2, i.e. we XOR both sides by P2 ⊕ P ′

2 to “cancel
out” P2 and “introduce” P ′

2:

Final - Page 21 of 46

DK(C2 ⊕ P1)⊕ C1 = P2

DK(C2 ⊕ P1)⊕ C1 ⊕ P2 ⊕ P ′
2⏞ ⏟⏟ ⏞

IV ′
2

= P2 ⊕ P2 ⊕ P ′
2

= P ′
2

Matching terms again, we see that both are equal if we set C ′
1 = C1 ⊕ P2 ⊕ P ′

2. This answers Q5.6.

First tricky part of the question: Since we changed C1 to C ′
1 = C1 ⊕ P2 ⊕ P ′

2, we have to go back
and fix our first equation, which is now using C ′

1 instead:

DK(C1 ⊕ IV2)⊕ IV1 ⊕ P1 ⊕ P ′
1⏞ ⏟⏟ ⏞

IV ′
1

= P ′
1

DK(C1 ⊕ P2 ⊕ P ′
2⏞ ⏟⏟ ⏞

C′
1

⊕IV2)⊕ IV1 ⊕ P1 ⊕ P ′
1⏞ ⏟⏟ ⏞

IV ′
1

=???

We can fix this by changing IV2 to IV ′
2 such that the extra P2 ⊕ P ′

2 term is cancelled out:

DK(C1 ⊕ P2 ⊕ P ′
2⏞ ⏟⏟ ⏞

C′
1

⊕ IV2 ⊕ P2 ⊕ P ′
2⏞ ⏟⏟ ⏞

IV ′
2

)⊕ IV1 ⊕ P1 ⊕ P ′
1⏞ ⏟⏟ ⏞

IV ′
1

= DK(C1 ⊕ IV2)⊕ IV1 ⊕ P1 ⊕ P ′
1⏞ ⏟⏟ ⏞

IV ′
1

= P ′
1

This tells us that IV ′
2 = IV2 ⊕ P2 ⊕ P ′

2. This answers Q5.5.

Second tricky part of the question: Since we changed P1 to P ′
1, we need to revisit the second

equation, which is now using P ′
1 instead of P1:

DK(C2 ⊕ P1)⊕ C1 ⊕ P2 ⊕ P ′
2⏞ ⏟⏟ ⏞

IV ′
2

= P ′
2

DK(C2 ⊕ P ′
1)⊕ C1 ⊕ P2 ⊕ P ′

2⏞ ⏟⏟ ⏞
IV ′

2

=???

We can fix this by changing C2 to C ′
2 such that P ′

1 is “cancelled out” and P1 is “reintroduced”:

Final - Page 22 of 46

DK(C2 ⊕ P1 ⊕ P ′
1⏞ ⏟⏟ ⏞

C′
2

⊕P ′
1)⊕ C1 ⊕ P2 ⊕ P ′

2⏞ ⏟⏟ ⏞
IV ′

2

= DK(C2 ⊕ P1)⊕ C1 ⊕ P2 ⊕ P ′
2⏞ ⏟⏟ ⏞

IV ′
2

= P ′
2

This tells us that C2 = C2 ⊕ P1 ⊕ P ′
1. This answers Q5.7, and we are done.

Final - Page 23 of 46

Q6 Asymmetric Cryptography: Plentiful Playlists (11 points)
Alice and Bob wish to create a music playlist for their upcoming road trip to Pittsburgh. Alice and Bob
each come up with a list of n songs. Some (but not all) of the songs might appear on both lists.

Alice and Bob want to learn the songs that are on both lists, without revealing their individual lists to
each other.

For example, say Alice’s list has the songs “One Little Victory” and “Motivation”, while Bob’s list
has “Motivation” and “Give It All”. Both Alice and Bob should be able to learn that both lists contain
“Motivation”. However, Alice should learn nothing about Bob’s other songs, and vice versa.

They decide to use the following protocol, but need your help to fill in the blanks. Assume that p is a
large prime, like those used in Diffie-Hellman, and each song is represented as an integer mod p.

1. Alice and Bob denote their lists as a1, . . . , an and b1, . . . , bn respectively.
2. Alice generates a random number r (mod p).
3. Bob generates a random number k (mod p).
4. For each element ai in Alice’s list, Alice sends STEP4i = ari (mod p) to Bob.
5. For each element STEP4i received from Alice in the previous step, Bob computes STEP5i = ____,

and sends STEP5i to Alice.
6. For each element STEP5i received from Bob in the previous step, Alice computes STEP6i = ____.
7. For each element bi in Bob’s list, Bob sends STEP7i = ____ to Alice.
8. Alice compares the set of STEP6i (for all i) and STEP7j (for all j) to find matching pairs, i.e. all

(i, j) such that STEP6i = STEP7j . For the pairs that match, Alice finds the corresponding ai.
9. Alice sends the set of all matching ai to Bob over a secure channel.

Q6.1 (2 points) Replace the blank in Step 5.

(STEP4i)− k (mod p)

k · STEP4i (mod p)

STEP4i + k (mod p)

(STEP4i)
k (mod p).

Q6.2 (2 points) Define r−1 such that gr·r−1 ≡ g (mod p) for all g (mod p). Assume that such an r−1

always exists.

Replace the blank in Step 6.

(STEP5i)
r−1

(mod p)

r−1 · (STEP5i) (mod p)

(STEP5i)
r·r−1

(mod p)

(STEP5i)
r (mod p)

Final - Page 24 of 46

Q6.3 (2 points) Replace the blank in Step 7.

bri (mod p)

bki (mod p)

bi + k (mod p)

(bri)
k (mod p)

Solution:

Step 5 gives Alice arki (mod p) for all songs in Alice’s list.

In Step 6, Alice will “cancel out” the r by computing (arki)r
−1

= aki (mod p), for all songs in
Alice’s list.

In Step 7, Bob will send bki (mod p) for all songs in Bob’s list.

If song i in Alice’s list matches song j in Bob’s list, we’ll get aki = bkj , which allows Alice to
learn which songs match.

Q6.4 (1 point) Which option best explains why Alice and Bob cannot learn the songs in the other
person’s list (besides the songs that are in both lists)?

The values are encrypted with a shared symmetric key derived via Diffie-Hellman.

Alice does not know k (Bob’s random number), and Bob does not know r (Alice’s random
number).

Exponentiation is commutative modulo p, i.e. (xa)b ≡ xab ≡ (xb)a (mod p).

Factoring the product of two large primes is considered to be difficult.

Solution: Alice cannot learn the other songs in Bob’s list, because given bki (mod p), Alice
has no way to derive bi. In order for Alice to derive bi, she would need to know k, so that she
can derive k−1 (mod p) and compute (bki)k

−1 ≡ bi (mod p).

A is false because there is no shared symmetric key ever derived in this question (i.e. no value
is ever explicitly derived as “the key”).

C is a true statement, but it does not explain why Alice and Bob are unable to learn each
other’s songs.

D is false because the factoring problem is not used in this protocol (contrast with RSA, where
we multiply together two large primes, and rely on the fact that factoring this number is hard).

Final - Page 25 of 46

Q6.5 (2 points) What information is leaked to a third-party eavesdropper? Select all that apply.

All of Alice’s songs

All of Bob’s songs

All songs on both lists

The number of songs in Alice’s list

The number of songs in Bob’s list

None of the above

Solution:

A: False. An attacker does see ari (mod p), but because the attacker does not know r, they
cannot derive r−1 and compute (ari)r

−1 to retrieve the values ai.

B: False. An attacker does see bki (mod p), but because the attacker does not know k, they
cannot derive k−1 and compute (bki)k

−1 to retrieve the values bi.

C: False. In the final step, Alice sends the matching ai to Bob over a secure channel.

D: True. An attacker can see the number of values ari (mod p) sent to Bob in Step 4, even
though they don’t know what the values are.

E: True. An attacker can see the number of values bki (mod p) sent to Alice in Step 7, even
though they don’t know what the values are.

Final - Page 26 of 46

Q6.6 (2 points) In the current scheme, a third-party eavesdropper learns some information about the
number of songs on both lists.

Which option(s) prevent the eavesdropper from learning any information about the number of
songs on both lists? Assume there are ℓ songs on both lists. Reminder: There are n songs on each
list.

Add n− ℓ dummy values to the message in Step 9.

Addmin(n, ℓ) dummy values to the message in Step 9.

Addmax(n, ℓ) dummy values to the message in Step 9.

Add n+ ℓ dummy values to the message in Step 9.

None of the above

Solution: For all options, remember that in Step 9, a secure channel still leaks the length of
the message.

A: True. This forces Step 9 to always send ℓ+ (n− ℓ) = n items, which prevents an attacker
from learning ℓ.

B: False. We know that ℓ ≤ n, so Step 9 will send ℓ+min(n, ℓ) = ℓ+ ℓ = 2ℓ items, which
still leaks ℓ.

C: False. We know that ℓ ≤ n, so Step 9 will send ℓ +max(n, ℓ) = ℓ + n items, which still
leaks ℓ.

D: False. This causes Step 9 to send ℓ+ n+ ℓ = n+ 2ℓ items, which still leaks ℓ.

Final - Page 27 of 46

Q6.7 (0 points) A+ Question: This subpart is worth no points and is considerably more difficult
than the rest of the exam. If you correctly solve this subpart and are in the "A" grade bin
at the end of the semester, you may be moved up to the "A+" bin. .

In this scenario, you are controlling Alice who is running the aforementioned protocol with Bob.
Design an attack to recover Bob’s ephemeral key k (mod p−1), and by extension reveal his entire
set.

Assumptions:

1. Assume the correct answers were selected for the first three subparts (if you did not select
the correct responses, you will receive no credit for this subpart).

2. You may choose an arbitrary set of elements for Alice, and also deviate from the protocol in
any of Alice’s steps – for example, you may set r = 1 in Step 2. Bob will follow the protocol
honestly and will not try to actively detect any sort of attack.

3. p = p1p2 · · · pn + 1, where each individual prime pi is small enough that you can solve
the discrete logarithm problem mod pi. The attacker knows this factorization.
Clarification after exam: The ability to solve the discrete logarithm (mod pi) should instead
be: "pi is very small, such that you may feasibly brute force pi possibilities to find a discrete
logarithm".

4. k is invertible modulo p− 1.

HINT: Use the Chinese Remainder Theorem.

Final - Page 28 of 46

Solution:

The key to this attack in the "for-loop" in Step 4, where Alice sends ari (mod p) and gets back (ari)k
(mod p) for all i. By modifying the order (smallest k such that gk = 1 (mod p)) of the underlying
ari element, we can leak the value of k modulo the order. By collecting a set of coprime orders and
their respective values for k, we can use CRT to recover the full value of k.

It is important to note that simplying evaluating (ai)
k mod pi and solving for k does not work

here. This is because we would end up finding k (mod pi − 1).

To do this, we need a way to get an element of order pi for each individual pi. This is most easily
done by finding a generator g and setting r = 1 and

ai = g
p−1
pi

When we send ai and receive y = aki , there are only pi many possibilities for y. We then solve the
discrete log for y to recover k (mod pi). Note that technically we are still (mod p), but since
there’s only pi possibilities to check, this is within the range of an attacker. (The setup says the
attacker can solve (mod pi), which is imprecise here since we are solving over a order pi cyclic
group and not a modular field. The cyclic subgroup generated does not lend itself to efficient
modular arithmetic-only attacks like the general number field sieve, and rather relies on generic
group algorithms. However, the intention for the question was that pi is so small that these would
both be feasible for the attacker).

1. Set r = 1.

2. Set ai = g
p−1
pi for i ∈ [1, n].

3. After Step 4, we have aki for i ∈ [1, n]. For each of these values, find k mod pi as aforemen-
tioned.

4. We now have k (mod p1), k (mod p2), . . . , k (mod pn). Solve this system using the Chi-
nese Remainder Theorem to recover k (mod p1p2 · · · pn) = k (mod p− 1).

5. Find k−1 (mod p− 1), which exists per the assumptions.

6. For each bki sent by Bob, evaluate (bki)k
−1 ≡ bi (mod p).

Final - Page 29 of 46

Q7 Web Security: Suspicious SQL (17 points)
A bank website, bank.com, decides to test out a new form of user authentication.

• When a user signs up: The user chooses an alphanumeric username. The bank securely gives
the user a symmetric key (known only to the user and the bank).

The bank has a SQL table named keys, which maps usernames to keys. The table has two columns:
username (of type string) and key (of type integer).

• When a sender wants to send money: the sender encrypts the recipient’s username with the
sender’s key, and makes a GET request to:

www.bank.com/transfer?sender= &recipient=

The first blank contains the sender’s username. The second blank contains the recipient’s username,
encrypted with the sender’s key.

• When the bank receives a GET request: the bank first runs this SQL query:

SELECT key FROM keys WHERE username=' '

where the blank is replaced with the first URL parameter.

Then, the bank will use the key returned by the query to decrypt the the recipient’s username.

Finally, the bank transfers money from the sender (whose username comes from the first URL
parameter) to the recipient (whose username comes from the second URL parameter, decrypted).

Note: For this entire question, you do not need to consider URL escaping.

Q7.1 (1 point) If requests to bank.com are made over HTTP, which of these values can an on-path
attacker see? Select all that apply.

Sender’s IP address

Sender’s plaintext username

Recipient’s plaintext username

None of the above

Solution:

A: True. HTTP runs on top of TCP/IP, so the IP address is unaffected by the fact that we’re
using HTTP.

B: True. HTTP is unencrypted, so the URL parameters, including the unencrypted sender
username, are visible.

C: False. HTTP is unencrypted, but the recipient’s username is encrypted by the protocol, so
an on-path attacker cannot see it.

Final - Page 30 of 46

Q7.2 (1 point) If requests to bank.com are made over HTTPS, which of these values can an on-path
attacker see? Select all that apply.

Sender’s IP address

Sender’s plaintext username

Recipient’s plaintext username

None of the above

Solution:

HTTPS encrypts the URL parameters (since that’s inside the HTTPS payload), so neither
username is visible to an attacker.

However, HTTPS is still running on top of TCP/IP, so the IP address, which is in an “outer”
layer of headers wrapped around the HTTPS packet, is still unaffected by the HTTPS/TLS
encryption.

Final - Page 31 of 46

For the next four subparts: Mallory (username: mallory) wants to cause the user Bob (username: bob)
to run the Javascript function hack(), once he clicks on a bank.com link provided by Mallory.

In each subpart, select whether Mallory’s attack is possible. If you select “Yes,” provide the URL
parameters (sender and recipient) in the link that Bob clicks. In your answer(s), you may use
Mallory’s keyKmallory and the encryption function Enc(·, ·), where the first argument is the key and
the second argument is the plaintext.

Q7.3 (3 points) For this subpart only: If the decrypted recipient username does not exist in the keys
table, the bank will return an HTML page with the text:

“____ does not exist”

replacing the blank with the decrypted recipient username.

Can Mallory cause Bob to call hack()?

Yes No

If you selected “Yes”:

sender:

Solution: mallory

recipient:

Solution: Enc(Kmallory, <script>hack()</script>)

Solution: The server will look up Mallory’s key, since the sender field is set to Mal-
lory. Then, the server uses Mallory’s key to decrypt the recipient field and gets
<script>hack()</script>. This is not a valid username, since the bank enforces alphanu-
meric usernames only.

As a result, the bank will return an HTML page with the text: “<script>hack()</script>
does not exist”, which will cause Bob’s browser to run Javascript calling hack().

Final - Page 32 of 46

Q7.4 (3 points) For this subpart only: if the decrypted recipient username does not exist in the keys
table, the bank will return an HTTP 404 response.

Can Mallory cause Bob to call hack()?

Yes No

If you selected “Yes”:

sender:

Solution: N/A

recipient:

Solution: N/A

Solution: The attack from the previous part is no longer possible, since the bank is only
returning an HTTP 404 response, without any actual content specified by the attacker in the
URL.

Q7.5 (1 point) What type of attack is Mallory trying to execute in the previous two subparts?

Stored XSS

Reflected XSS

SQL injection

CSRF

Solution: Mallory wants Bob to click on a link with Javascript in the URL parameter, such
that the page returned by the bank contains the same Javascript that was in the URL parameter.
This is a reflected XSS attack.

Note that this is not a CSRF attack, since we’re not relying on the fact that Bob is sending any
cookies. (In fact, cookies aren’t used in the question at all.)

Final - Page 33 of 46

Q7.6 (1 point) Select the true statement about Mallory’s attack (assuming it succeeds).

Assume mallory.com is a website controlled by Mallory.

The hack() function runs with the origin of bank.com.

The hack() function runs with the origin of mallory.com.

hack() is able to read cookies with the HttpOnly flag set.

Instead of making Bob click on a bank.com link, Mallory could make Bob click on a link
like mallory.com/hack, and the attack would be the same.

Solution: Reflected XSS is dangerous because it allows the attacker’s Javascript to run with
the bank’s origin, since the Javascript is being copied onto the HTML page and returned by
the bank.

C is false because Javascript cannot read cookies with the HttpOnly flag set (by definition).

D is false, because if Mallory’s webpage returned the same Javascript, that Javascript would be
running with Mallory’s origin instead of the bank’s origin.

In the rest of the question, Mallory wants to create a list of one or more URLs such that when Mallory
clicks on every URL in the list, one after the other, the bank sends money from Bob to Mallory.

Q7.7 (1 point) Mallory thinks that she could create a single URL to execute this attack.

Why is it not possible to execute this attack with a single URL?

The SQL injection has to be placed in sender, but this will cause the sender username to
be invalid.

The SQL injection has to be placed in recipient, but this will cause the recipient username
to be invalid.

The SQL injection has to be placed in both sender and recipient, but this causes both
fields to be invalid.

The SQL injection needs to be split across two separate URLs.

Solution: As specified in the question, the SQL query accepts user input from the sender
URL parameter, which eliminates B and C. There’s no reason we would need to split the
injection across two separate URLs, which eliminates D.

Final - Page 34 of 46

Q7.8 (6 points) Construct two URLs, such that when Mallory clicks on the first URL, and then the
second URL, the bank will send money from username bob to username mallory.

You may use Kmallory and the encryption function Enc(K,M) in your answer. If a value could be
anything, you must write the word "anything" in the box.

First URL:

sender:

Solution: '; UPDATE keys SET key=Kmallory WHERE username='bob';--

recipient:

Solution: anything

Second URL:

sender:

Solution: bob

recipient:

Solution: Enc(Kmallory, mallory)

Solution: The first link, when plugged into the SQL query, creates:

SELECT key FROM keys WHERE username='';

UPDATE keys SET key=Kmallory WHERE username='bob';--'

The injected query will change the keys table, such that Bob is now associated with Mallory’s
key.

Since Bob is now associated with Mallory’s key, the second link claims to be Bob in the sender
field, and uses Mallory’s key (which the server thinks is Bob’s key) to encrypt the recipient,
Mallory.

Final - Page 35 of 46

Q8 DNS: Check Please (11 points)
Suppose that in DNS, we introduce a single, additional name server that can be used to check if the
records returned by other name servers are correct.

Every time the user makes a DNS query, the user also sends the same query to the check server. The
user receives the answer directly from the check server, and can compare that answer against the
answer received from the other name servers.

Q8.1 (1 point) The zone of the check server must be set to . (root). Otherwise, ____ would cause
records from the check server to be rejected. What term goes in the blank?

Kaminsky attack

Bailiwick checking

NSEC3 hashing

Glue validation

Solution: Recall that bailiwick checking prevents a name server from providing answers
outside of its zone (e.g. the .com name server cannot return a record for www.cs161.org).
Since the check server needs to return answer records for every record, we need to set its zone
to root.

Q8.2 (1 point) Is the Kaminsky attack still possible when users also issue a request to the check server
for every query?

Yes, assuming the user doesn’t validate glue records with the check server.

Yes, even if the user validates glue records with the check server.

No, because the check server is in the root zone.

No, because in the Kaminsky attack, the malicious record is returned in the Answer section.

Solution: Remember that in the Kaminsky attack, the attacker tricks the user into making
requests for non-existent domains like fake1.cs161.org. In the response, the attacker adds
a malicious glue record in the Additional section with the IP address of www.cs161.org.

If the user validates glue records with the check server, the attacker would not be able to spoof
a response with a malicious glue record (since the check server would reveal that this record
is incorrect).

However, if the user does not validate glue records, then the check server verifying the actual
answer (i.e. fake1.cs161.org doesn’t exist) would not affect the additional record being
added to the cache.

Final - Page 36 of 46

For the rest of question, suppose we’re now using DNSSEC instead of DNS.

Q8.3 (2 points) Which of these options, by itself, would ensure that every recursive resolver trusts the
check server? Select all that apply.

The root name server provides a DS and RRSIG record endorsing the check server.

The check server sends an RRSIG record over its own public key.

The check server sends an RRSIG record over every record it sends.

The check server’s public key is hard-coded in all resolvers.

None of the above

Solution:

A: True. Resolvers implicitly trust the root name server. DS and RRSIG records are used to
endorse trust to another name server, so this would allow all resolvers to trust the check server
as well.

B: False. Anybody can sign their own public key (e.g. an attacker could pretend to be the
check server and sign their own public key).

C: False. The check server signing records is not sufficient; we need some way to verify the
check server’s public key.

D: True. This is similar to how the root server is implicitly trusted by all resolvers.

For the rest of the question, suppose we’re using DNSSEC, and every client trusts the check server.

Q8.4 (1 point) Which record type(s) does the check server need to send to securely answer the user’s
query? Select all that apply.

A type record

NS type record

RRSIG type record

DS type record

None of the above

Solution: An A and RRSIG record are used to deliver the answer and a signature on the
answer in standard DNSSEC.

Final - Page 37 of 46

Q8.5 (2 points) For this subpart only, assume an attacker has compromised the check server.

Also, assume that the user will re-send the query if they receive different answers from the check
server and the other name servers.

Select all attacks that this attacker could carry out.

DoS attack

Cache poisoning attack

None of the above

Solution:

A: True. The check server can repeatedly send the wrong answer, forcing the user to re-send
the query forever.

B: False. The check server can send the wrong answer, but cannot tamper with the answer
returned by the other name servers (which are using DNSSEC).

Final - Page 38 of 46

Q8.6 (2 points) Select all true statements about the check server verifying non-existent domain names.

If the server uses offline signing, it will need to store a large amount of NSEC records.

If the server uses online signing, it will need to store a large amount of NSEC records.

If the server uses online signing, it is more vulnerable to DoS attacks (compared to using
offline signing).

If the server uses online signing, it is more vulnerable to having its private key stolen
(compared to using offline signing).

None of the above

Solution:

A: True. Offline signing means we sign the records ahead of time and deliver them as needed.
This means the check server, which is answering queries for everything in the root zone,
would need to store a large number of NSEC records.

B: False. Online signing means that the server signs answers for non-existent domains as they
are requested. No pre-storage of records is needed.

C: True. Online signing requires on-demand computation, and an attacker can DoS the server
by sending lots of fake domains that the server needs to sign on demand.

D: True: Online signing requires the server to keep its private key on the server itself which is
connected to the Internet. By contrast, in offline signing, the server can sign records with its
private key ahead of time, and does not need to keep the private key on a server connected to
the Internet.

Q8.7 (2 points) Name one usability disadvantage to having a single additional check server. You can
answer in 10 words or fewer (the staff answer is 1 word).

Solution: Staff answer: Scalability

A single check server will not not scale well to the volume of requests from the entire Internet.

Redundancy could also be an answer. If the check server goes down, the entire system would
stop working. Alternate solutions could include bandwidth problems, etc.

Final - Page 39 of 46

Q9 TLS: Key Rotation (10 points)
Consider modifying TLS so that within a long-running connection, the server and client switch to
using a different set of symmetric keys every hour.

For the entire question, you can assume TLS does not use record numbers.

Q9.1 (2 points) Suppose the server and client switch to using a different randomly-generated key every
hour. Select all true statements.

Within one connection, a MITM attacker can only replay a message from the same hour.

A MITM can replay messages from an earlier connection, if it was made during the same
hour of the day.

A MITM attacker could feasibly brute-force the symmetric keys if they were not switched
every hour, but could not brute-force the keys if they only had one hour per key.

This scheme has no practical purpose because TLS connections cannot last more than an
hour, or else the TCP sequence numbers would start being reused.

None of the above

Solution:

A: True. We assume TLS does not use record numbers, so an attacker can replay messages
within the same hour, when the same key is being used.

B: False. Different connections have different values of ClientRandom and ServerRandom, so
their initial symmetric keys will be different. Also, this subpart says that a different randomly-
generated key is used every hour. Therefore, messages between different connections won’t
be encrypted with the same key.

C: False. Even if keys are not switched, it’s infeasible for an attacker to brute-force a 128-bit or
256-bit symmetric key.

D: False. TCP sequence numbers don’t depend on how long a connection has been open (they
depend on the number of bytes sent).

Final - Page 40 of 46

Q9.2 (1 point) Suppose the client and server’s system clocks are out of sync, and the client uses an old
key to send a message to the server, which is using a newer key.

Assume the server has discarded the old key, and is only using the newer key.

What will the server do with this message?

Accept the ciphertext, and decrypt it to the correct plaintext.

Accept the ciphertext, and decrypt it to garbage.

Reject the message because the MAC is invalid.

Reject the message because the underlying IP packets will get dropped.

Solution: Recall that in TLS, messages after the handshake are both encrypted and MACed.
Therefore, the message will be rejected because the MAC was computed with the old key, but
the server is checking the MAC using the new key.

B) was intended to mean the server would decrypt the message to garbage and still process it
as a "real" message, which is false. However, since TLS MAC-then-encrypts, the server does
technically decrypt the ciphertext before rejecting it, so this was accepted as a valid answer as
well.

A is false because the key is different.

D is false because the IP packet will not be dropped because of an invalid MAC. IP is best-effort
and operates below the TLS layer, so IP will try its best to deliver the message, even if the
MAC inside the message is incorrect.

In each of the next three subparts, a scheme for switching keys is provided.

An on-path attacker has observed the entire TLS connection so far (starting from the handshake).

The attacker wants to learn Kt, the current key in the connection. Can the attacker learn Kt, and if so,
do they need to know Kt−1, the previous key in the connection?

Clarification during exam: For 9.4 and 9.5,K0 = HKDF(PremasterSecret, "start").

Final - Page 41 of 46

Q9.3 (1 point) To compute the new key, the client and the server compute:

HMAC(PremasterSecret, t)

where t is the number of hours elapsed since the beginning of the connection, rounded down.

The attacker can learn Kt, even if they don’t knowKt−1.

The attacker can learn Kt, but only if they knowKt−1.

The attacker cannot learnKt, even if they know Kt−1.

Solution: For the next three parts, recall that in order to compute the HMAC output, the
attacker would need to know both HMAC inputs.

The attacker doesn’t know the premaster secret, so they have no way to compute the HMAC
output (even if they knowKt−1).

Q9.4 (1 point) To compute the new key, the client and the server compute:

HMAC(ClientRandom,Kt−1)

The attacker can learn Kt, even if they don’t knowKt−1.

The attacker can learn Kt, but only if they knowKt−1.

The attacker cannot learnKt, even if they know Kt−1.

Solution: ClientRandom is not encrypted when sent during the handshake, and the attacker
has observed the entire TLS connection (according to the question assumptions).

Therefore, if the attacker knowsKt−1, they can compute the HMAC output.

However, if the attacker does not knowKt−1, they cannot compute the HMAC output.

Final - Page 42 of 46

Q9.5 (1 point) To compute the new key, the client and the server compute:

HMAC(PremasterSecret,Kt−1)

The attacker can learn Kt, even if they don’t knowKt−1.

The attacker can learn Kt, but only if they knowKt−1.

The attacker cannot learnKt, even if they know Kt−1.

Solution: As in the earlier subpart, an attacker who doesn’t know the premaster secret can’t
compute the HMAC output, even if they knowKt−1.

Final - Page 43 of 46

In each of the next two subparts, a scheme for switching keys is provided.

An on-path attacker and a MITM attacker have observed the entire TLS connection so far (starting
from the handshake). Select all true statements.

Q9.6 (2 points) To compute the new key, the client chooses a new, random PremasterSecrett,
encrypts it with the server’s public key (not any symmetric keys), and sends the encrypted
PremasterSecrett to the server.

Kt is derived from the new PremasterSecrett, the original ClientRandom, and the original
ServerRandom.

A on-path attacker can learnKt, even if they don’t knowKt−1.

A on-path attacker can learnKt, but only if they knowKt−1.

A MITM attacker can trick the server into accepting a new key known by the attacker, even
if they don’t knowKt−1.

A MITM attacker can trick the server into accepting a new key known by the attacker, but
only if they knowKt−1.

None of the above

Solution: A and B are false. The attacker has no way to learn the new premaster secret, since
they don’t know the server’s private key (which would be needed to decrypt and learn the
premaster secret). The premaster secret is not encrypted withKt−1, so knowing this value
does not help the attacker.

C is true. The MITM attacker can select their own PremasterSecrett, encrypt it with the
server’s public key (known to the attacker since they observed the handshake and the server’s
public key is sent in the certificate), and send their own encrypted PremasterSecrett to the
server. There’s no way for the server to check whether this value was generated by the server
or the attacker, so the server would accept the malicious PremasterSecrett value.

ClientRandom and ServerRandom are known to the attacker (since they observed the hand-
shake), so this allows the attacker to derive the symmetric key with those two values and the
attacker-selected premaster secret.

Kt−1 is not needed to carry out this attack, so D is false.

Final - Page 44 of 46

Q9.7 (2 points) To compute Kt, the client and server perform a Diffie-Hellman key exchange, with the
server signing its half of the exchange. (The exchange is not encrypted with any symmetric keys.)

Kt is derived from the new Diffie-Hellman shared secret, the original ClientRandom, and the
original ServerRandom.

A on-path attacker can learnKt, even if they don’t knowKt−1.

A on-path attacker can learnKt, but only if they knowKt−1.

A MITM attacker can trick the server into accepting a new key known by the attacker, even
if they don’t knowKt−1.

A MITM attacker can trick the server into accepting a new key known by the attacker, but
only if they knowKt−1.

None of the above

Solution: A and B are false, because an on-path attackerwho sees the Diffie-Hellman exchange
(e.g. ga mod p and gb mod p) cannot derive the Diffie-Hellman shared secret (gab mod p).
KnowingKt−1 would not help the attacker learn the Diffie-Hellman shared secret.

C is true. The MITM attacker can replace the client’s ga mod p with their own malicious
gm mod p. In TLS, the client does not sign their own half of the Diffie-Hellman exchange, so
there’s no way for the server to distinguish between the client-chosen and attacker-chosen
values. This would cause the server to derive gbm mod p as the shared secret.

The attacker knows m (chosen by themselves) and gb mod p (sent by the server), so the
attacker can also derive the shared secret gbm mod p, which allows the attacker to derive the
new key as well.

The attacker does not need to knowKt−1 to carry out this attack, so D is false.

Final - Page 45 of 46

Nothing on this page will affect your grade.

Post-Exam Activity: Wheel of Fortune
Bot, I’d like to solve the puzzle:

Category: Memory Safety

Comment Box
Congratulations for making it to the end of the exam! Feel free to leave any thoughts, comments, feedback,
or doodles here:

Final - Page 46 of 46

