
CS 161
Spring 2024

Introduction to
Computer Security Midterm

Name:

Student ID:

This exam is 110 minutes long.

Question: 1 2 3 4

Points: 0 16 16 16

Question: 5 6 7 Total

Points: 16 19 17 100

For questions with circular bubbles, you may
select only one choice.

Unselected option (completely unfilled)
Only one selected option (completely filled)
Don’t do this (it will be graded as incorrect)

For questions with square checkboxes, you may
select one or more choices.

You can select
multiple squares (completely filled)

Anything you write outside the answer boxes or
you cross out will not be graded. If you write mul-
tiple answers, your answer is ambiguous, or the
bubble/checkbox is not entirely filled in, we will
grade the worst interpretation.

Pre-exam activity (0 points):
It’s Leap Day, which means it’s time for the quadrennial
Leap-Frog Race! Everyone entered their frogs into the
contest, but unfortunately the results got mixed up. Evan-
Bot needs your help to piece together the standings from
eyewitness reports!

1. Alice: "Bob’s frog was right behind EvanBot’s frog."

2. Bob: "CodaBot’s frog was somewhere ahead of mine."

3. CodaBot: "I couldn’t tell whose it was, but there was a
frog with a hat somewhere ahead of Mallory’s frog."

4. Eve: "My frog was always ahead of Alice’s frog."

5. Mallory: "My frog definitely finished before CodaBot’s
frog. I’m telling the truth, I promise."

Circle the winning frog.

Q1 Honor Code (0 points)
I understand that I may not collaborate with anyone else on this exam, or cheat in any
way. I am aware of the Berkeley Campus Code of Student Conduct and acknowledge
that academic misconduct will be reported to the Center for Student Conduct and may
further result in, at minimum, negative points on the exam.

Read the honor code above and sign your name:

Midterm - Page 1 of 22

Q2 True/False (16 points)
Each true/false is worth 1 point.

Q2.1 The Mallory Security Agency requires 128-bit AES encryption for all data, and "Top Secret" data is
encrypted with an additional 256-bit key stored in a separate location.

True or False: This is an example of Defense in Depth.

(A) True (B) False

Q2.2 Devices storing cryptographic keys are often required to be fitted with tamper-evident seals.

True or False: This is an example of Detect If You Can’t Prevent.

(A) True (B) False

Q2.3 True or False: All strings in C are terminated with the character '\n'.

(A) True (B) False

Q2.4 True or False: Enabling non-executable pages prevents the ret2libc attack.

(A) True (B) False

For the next 2 subparts: Suppose we have a little-endian C program with a local variable char buf[8].
Consider the following possible GDB output after running the command x/4wx buf:

0xffffff58: 0x61657270 0x0000006d 0xc0dab0bb 0xbaa15691

Q2.5 True or False: The words 0x61657270 and 0x0000006d correspond to the data in buf.

(A) True (B) False

Q2.6 True or False: buf[9] is 0xda.

(A) True (B) False

Q2.7 True or False: Every nondeterministic (randomized) encryption scheme is IND-CPA secure.

(A) True (B) False

Q2.8 True or False: If Alice encrypts a message to Bob using ElGamal, an eavesdropper who can solve
the discrete log problem would be able to correctly decrypt the message.

(A) True (B) False

Midterm - Page 2 of 22

Q2.9 True or False: Digital signature schemes often encrypt the message before signing to prevent
existential forgery attacks.

(A) True (B) False

Q2.10 True or False: AES-CTR does not require the message to be padded.

(A) True (B) False

Q2.11 True or False: HMAC is equivalent to NMAC withK1 = K2.

(A) True (B) False

Q2.12 True or False: Using the output of a PRNG as the key for a one-time pad provides perfect security,
even against an attacker with infinite computational power.

(A) True (B) False

Q2.13 True or False: Length-extension attacks are often used to break the collision resistance of a hash
function.

(A) True (B) False

Q2.14 True or False: The security of Diffie-Hellman relies on the modulus being difficult to factor.

(A) True (B) False

Q2.15 True or False: The security of ElGamal relies on the difficulty of finding gab mod p given
ga, gb mod p.

(A) True (B) False

Q2.16 True or False: Certificates are generally not sent over insecure channels due to the risk of a replay
attack.

(A) True (B) False

Midterm - Page 3 of 22

Q3 ’Tis But a Scratch (16 points)
King Arthur and his knights are searching for the Holy Grail. They find a castle protected by the
following vulnerable C code:

1 void castle () {
2 int8_t holy_hand_grenade;
3 char [16] holy_grail;
4 char [128] cave;
5
6 // Implementation not shown.
7 find_grail(holy_grail);
8
9 memset(cave , 0, 128);
10
11 fread (& holy_hand_grenade , 1, 1, stdin);
12
13 if (holy_hand_grenade >= 128) {
14 return;
15 }
16
17 fread(cave , holy_hand_grenade , 1, stdin)

;
18 printf("%s", cave);
19 }

Stack at Line 8

RIP of castle

(1)

(2)

(3)

cave

The find_grail function writes a secret 16-byte string to holy_grail, and it’s your job to make the
program output the holy_grail string! You can assume find_grail does not modify the stack in
any other way.

Q3.1 (1 point) What values go in blanks (1) through (3) in the stack diagram above?

(A) (1) SFP of castle (2) holy_hand_grenade (3) holy_grail
(B) (1) SFP of castle (2) holy_grail (3) cave
(C) (1) RIP of castle (2) holy_grail (3) holy_hand_grenade
(D) (1) &holy_grail (2) RIP of find_grail (3) SFP of find_grail

Q3.2 (1 point) Which vulnerability is present in the code?

(A) Off-by-one
(B) Format string vulnerability

(C) Signed/unsigned vulnerability
(D) Heap overflow

Midterm - Page 4 of 22

In the next two subparts, provide inputs that would cause the program to output the holy_grail
string (possibly as part of a larger output).

If a part of the input can be any non-zero value, use 'A'*n to represent the n bytes of garbage.

Q3.3 (4 points) Input to fread at Line 11:

Q3.4 (4 points) Input to fread at Line 17:

The next four subparts are independent from each other.

Q3.5 (1 point) Would it still be possible for your exploit to leak holy_grail if
fread(&holy_hand_grenade, 1, 1, stdin) on Line 11 is replaced with
gets(&holy_hand_grenade)?

(A) Yes, because gets would allow the attacker to overwrite the address of cave.

(B) Yes, because holy_hand_grenade is above holy_grail in the stack diagram.

(C) No, the null terminator added by gets will cause the final printf to terminate before
reaching holy_grail.

(D) No, because the null terminator added by gets will partially overwrite the SFP of
castle.

Q3.6 (1 point) Would it still be possible for your exploit to leak holy_grailwith stack canaries enabled?

(A) Yes, because the exploit writes around the canary to overwrite values above the canary.

(B) Yes, because the exploit never tries overwriting values above the canary.

(C) No, because all 4 bytes of the canary are overwritten by garbage.

(D) No, because the least-significant byte of the canary is overwritten by a null byte.

Midterm - Page 5 of 22

Q3.7 (1 point) Would it still be possible for your exploit to leak holy_grail with non-executable pages
enabled?

(A) Yes, because the exploit never writes any executable instructions on the stack.

(B) Yes, because the malicious instructions being executed are not on the stack.

(C) No, because the exploit writes executable instructions on the stack.

(D) No, because non-executable pages stops the exploit from writing anything on the stack.

Q3.8 (1 point) Would it still be possible for your exploit to leak holy_grail with ASLR enabled?

(A) Yes, because the exploit does not require knowing any absolute addresses.

(B) Yes, because the printf call will always leak an address on the stack.

(C) No, because we need to know the address of holy_grail in order to leak its value.

(D) No, because we need to know the address of castle in order to complete the exploit.

For the following subparts, your goal is now to execute a 72-byte shellcode, rather than leaking
holy_grail.

Q3.9 (1 point) Assuming no memory safety defenses are enabled, would it be possible to exploit this
program to execute shellcode?

(A) Yes (B) No

Q3.10 (1 point) Assuming canaries are enabled, would it still be possible to exploit this program to
execute shellcode?

(A) Yes, because we can leak the canary and overwrite the canary with itself.

(B) Yes, because the printf call can write directly to the RIP, skipping the canary.

(C) No, because we run the final fread before we can leak the canary.

(D) No, because it is not possible to run shellcode at all in this program.

Midterm - Page 6 of 22

Q4 I Sawed This Shellcode In Half! (16 points)
Consider the following vulnerable C code:

1 void boat(void* shellcode_first_half , void* shellcode_second_half
) {

2 // fp contains the address of the fgets function
3 uintptr_t fp = (uintptr_t) fgets;
4
5 char [32] buf;
6 char* buf_ptr = &buf;
7
8 fgets(buf , 32, stdin);
9 printf(buf);
10
11 fgets(buf , 32, stdin);
12 printf(buf);
13 }

This is the result of running disas fgets in GDB:

1 0x08076030: push %ebp
2 0x08076034: mov %esp , %ebp
3 0x08076038: sub $20 , %esp
4 ...
5 0x08076050: mov %ebp , %esp
6 0x08076054: pop %ebp
7 0x08076058: ret

shellcode_first_half is a pointer to the first half of shellcode and shellcode_second_half is a
pointer to the second half of shellcode. Both halves of shellcode have a ret instruction at the end.

Assumptions:

• ASLR is enabled, but all other memory safety defenses are disabled.
• The program can print an arbitrarily large number of bytes using printf.
• All addresses are at least 0x01000000.
• esp is not modified by the shellcode.

Q4.1 (2 points) Which of these inputs to the fgets on Line 8 will always leak the values of all the local
variables in the boat stack frame? Select all that apply.

(A) "%x" * 10

(B) "%s" * 10

(C) "%n" * 10

(D) "%c" * 10

(E) "%d" * 10

(F) None of the above

Midterm - Page 7 of 22

Now that we have the values of all the local variables in the boat stack frame, we need to compute two
values to use later in our exploit.

You can assume that the values outputted from the printf on Line 9 have all been converted to integers
that you can perform arithmetic on.

Q4.2 (2 points) Which of these values do we need to use later in our exploit?

&buf is the address of buf, which you leaked in Q4.1.

Hint: What is the address in memory we want to write to?

(A) &buf - 4

(B) &buf

(C) &buf + 32

(D) &buf + 36

(E) &buf + 40

(F) &buf + 44

Q4.3 (2 points) Which of these values do we need to use later in our exploit?

fp is the address of the fgets function, which you leaked in Q4.1.

Hint: What is the value we want to write into memory?

(A) fp

(B) fp + 0x4

(C) fp + 0x8

(D) fp + 0x20

(E) fp + 0x24

(F) fp + 0x28

Let x be the value you computed in Q4.2, and y be the value you computed in Q4.3.

You can perform arithmetic on these values (e.g. x + 5), and you can assume that the resulting value
is converted to the proper format (e.g. raw bytes, or decimal representation), so you don’t have to
manually do any conversions.

If a part of the input can be any non-zero value, use 'A'*n to represent the n bytes of garbage.

Q4.4 (8 points) Provide an input to the fgets call on Line 11 that will execute shellcode.

+ + '%c' + '% u' + '%n'

Midterm - Page 8 of 22

Q4.5 (1 point) If canaries are enabled, would it still be possible to exploit this program to execute
shellcode?

(A) Yes, because the exploit writes directly to the RIP instead of smashing through the canary.

(B) Yes, because overwriting the RIP directly disables the canary check altogether.

(C) No, because all 4 bytes of the canary are overwritten by garbage.

(D) No, because the ret instruction at the end of the first shellcode will fail the canary check.

Q4.6 (1 point) What happens to the exploit if boat is called with the arguments reversed?

In other words, instead of boat(shellcode_first_half, shellcode_second_half), what
if we called boat(shellcode_second_half, shellcode_first_half)?

(A) The instructions of shellcode would all execute in reverse order.

(B) The shellcode would execute unchanged.

(C) The second half of shellcode executes, followed by the first half of shellcode.

(D) The program would crash after returning from boat, but before executing shellcode.

Midterm - Page 9 of 22

Q5 Challenging Constructions (16 points)
Consider the following encryption scheme:

The encryption formula for this scheme is

Ci = EK(Mi + IV + i)

Q5.1 (1 point) Select the correct decryption formula for the given scheme.

(A)Mi = DK(Ci − IV − i)

(B)Mi = DK(Ci)− IV − i

(C)Mi = DK(Ci) + IV + i

(D)Mi = DK(Ci + IV − i)

To show this scheme is insecure, you want to provide a strategy that always wins the IND-CPA game.

Adversary (you) Challenger

M andM ′

C = (C0, C1)

GuessM orM ′

First, the adversary (that’s you!) sends two different challenge
messages,M ̸= M ′, to the challenger. For your strategy, you
can assumeM andM ′ are each two blocks long.

Then, the challenger randomly encrypts eitherM or M ′. The
resulting two-block ciphertext C = (C0, C1) is returned to you.

Finally, you guess whetherM or M ′ was encrypted.

In this strategy, the query phase is not needed (i.e. you never have to ask the challenger to encrypt
messages of your choosing beforehand).

Assume that the second challenge messageM ′ = (?, ?) is chosen completely at random.

Clarification during exam: Assume that each "?" value is independently randomly generated, so (?, ?) would
not necessarily be two identical values.

Midterm - Page 10 of 22

Q5.2 (2 points) What must be true ofM for this strategy to work?

(Note: ? denotes a randomly-chosen value)

(A)M0 = 0 andM1 = ?

(B)M0 = ? and M1 = 0

(C)M0 = ? andM1 = ?

(D)M1 = M0 + 1

(E)M1 = M0 − 1

(F)M0 = M1

Q5.3 (3 points) The challenger encrypts one of M,M ′ from the previous subparts and returns C =
(C0, C1).

Explain how you would determine whetherM orM ′ was encrypted. Your answer can use these
values:

• M = (M0,M1) andM ′ = (M ′
0,M

′
1)

• C = (C0, C1). Recall: C is either the encryption ofM or M ′.

An example of how you could describe your strategy, that has nothing to do with this question:
If C0 + 161 = M0, guess M . Else, guessM ′.

Q5.4 (1 point) What is the probability (excluding negligible factors) that an optimal attacker (i.e. using
the correct answer to Q5.3) wins the IND-CPA game?

(A) 50% (B) 66.7% (C) 75% (D) 100%

Now consider a modified version of the previous encryption scheme:

The encryption formula for this scheme is

Midterm - Page 11 of 22

Ci = EK(Mi ⊕ (IV + i))

You want to devise a strategy to win the IND-CPA game.

Assume that the second challenge messageM ′ = (?, ?) is chosen completely at random.

Q5.5 (1 point) What value should you pick forM?

(A) (0, ?)

(B) (?, 0)

(C) (?, ?)

(D) (0, 1)

(E) (1, 0)

(F) (1, 1)

Q5.6 (5 points) The challenger encrypts one of M,M ′ from the previous subparts and returns C =
(C0, C1).

Explain how you would determine whetherM orM ′ was encrypted. Your answer can use these
values:

• M = (M0,M1) andM ′ = (M ′
0,M

′
1)

• C = (C0, C1). Recall: C is either the encryption ofM or M ′.

Q5.7 (3 points) What is the probability (excluding negligible factors) that an optimal attacker (i.e. using
the correct answer to Q5.6) wins the IND-CPA game?

(A) 50% (B)
62.5%

(C)
66.7%

(D) 75% (E)
87.5%

(F) 100%

Justify your answer.

Midterm - Page 12 of 22

Q6 Authentic Auctions (19 points)
EvanBot wants to hold a charity auction and needs your help! They have designed a secure bidding
protocol as follows:

1. Each party chooses a bid x.
2. Each party applies a function COMMIT to x and broadcasts COMMIT(x) to every other party.
3. Once everyone has posted their commitment, each party reveals their bid and any other informa-

tion relevant to the scheme.

There are two key properties we want to guarantee:

1. Binding: If a party chooses x, sends COMMIT(x), and then reveals x′ ̸= x, other parties can detect
that x′ is invalid with overwhelming probability.

2. Hiding: COMMIT(x) should not leak more than a negligible amount of information about x.

For each of the following schemes, select whether the scheme provides binding, hiding, both, or neither.

You should assume that the range of all possible bids is small enough to brute-force, each
subpart is independent, and the auction is run exactly once. If a reveal step is not specified, assume
that the reveal step is to send x.

Hint: EvanBot says you should reread the above assumptions and make sure you understand them before
proceeding!

Clarification during exam: Assume that all parties have access to the trusted public keys of every other
party.

Q6.1 (1 point) COMMIT(x) = x

(A) Binding (B) Hiding (C) Both (D) Neither

Q6.2 (1 point) COMMIT(x) = H(x).

(A) Binding (B) Hiding (C) Both (D) Neither

Q6.3 (1 point) COMMIT(x) = EK(x), whereK is a publicly-known symmetric key shared by everyone.

(A) Binding (B) Hiding (C) Both (D) Neither

Q6.4 (1 point) COMMIT(x) = x ⊕K , where K is a randomly-generated one-time-pad key. To reveal,
each party sends x,K .

(A) Binding (B) Hiding (C) Both (D) Neither

Midterm - Page 13 of 22

Q6.5 (1 point) COMMIT(x) = H(x)⊕K , whereK is a randomly-generated one-time-pad key. To reveal,
each party sends x,K .

(A) Binding (B) Hiding (C) Both (D) Neither

The properties, repeated for your convenience:

1. Binding: If a party chooses x, sends COMMIT(x), and then reveals x′ ̸= x, other parties can detect
that x′ is invalid with overwhelming probability.

2. Hiding: COMMIT(x) should not leak more than a negligible amount of information about x.

Q6.6 (1 point) COMMIT(x) = H(x⊕K), whereK is a randomly-generated one-time-pad key. To reveal,
each party sends x,K .

(A) Binding (B) Hiding (C) Both (D) Neither

Q6.7 (1 point) COMMIT(x) = HMAC(K,x), where K is a publicly-known symmetric key shared by
everyone.

(A) Binding (B) Hiding (C) Both (D) Neither

Q6.8 (1 point) COMMIT(x) = Sign(SK, x), where Sign = xd mod N (naive RSA signature) and SK is
the secret key for the user sending the bid.

(A) Binding (B) Hiding (C) Both (D) Neither

Q6.9 (1 point) COMMIT(x) = Sign(SK, x), where Sign = H(x)d mod N (hash-based RSA signature).

(A) Binding (B) Hiding (C) Both (D) Neither

Q6.10 (1 point) COMMIT(x) = gx mod p, where g is a generator and p is large prime (like in Diffie-
Hellman).

(A) Binding (B) Hiding (C) Both (D) Neither

Q6.11 (1 point) Note: (x, y) denotes a tuple of two values, x and y.

COMMIT(x) =

{︄
(x, x+ 1) with probability 0.5
(x− 1, x) with probability 0.5

(A) Binding (B) Hiding (C) Both (D) Neither

Midterm - Page 14 of 22

The properties, repeated for your convenience:

1. Binding: If a party chooses x, sends COMMIT(x), and then reveals x′ ̸= x, other parties can detect
that x′ is invalid with overwhelming probability.

2. Hiding: COMMIT(x) should not leak more than a negligible amount of information about x.

Q6.12 (8 points) Design a commitment scheme that was not mentioned in a previous subpart. Your
scheme should be both binding and hiding.

Assume you have access to an unlimited source of random bits.

Given x, how do you compute COMMIT(x)?

List of values sent in the reveal step (including x):

List of steps to verify COMMIT(x) given the values from the reveal step:

Midterm - Page 15 of 22

Midterm - Page 16 of 22

Q7 Ephemeral Exchanges (17 points)
Consider the following authentication protocol. pwd is a standard-strength password (i.e. vulnerable to
brute-force). PKserver is a long-term, trusted public key for the server. Assume there’s only a single
user/password stored on the server.

Client Server

1. ComputeKpwd = H(pwd)1. ComputeKpwd = H(pwd)

2. GenerateKsym randomly

3. Enc(Kpwd,RSAEnc(PKserver,Ksym))

4. Decrypt to getKsym

5. RC (random challenge message)

6. Enc(Ksym, RC)

7. Verify Step 6

8. RS (random challenge message)

9. Enc(Ksym, RS)

10. Verify Step 9

Here is an equivalent description of the protocol:

1. Both the client and server deriveKpwd = H(pwd).
2. The client generates a random symmetric keyKsym.
3. The client sends Enc(Kpwd,RSAEnc(PKserver,Ksym)) to the server.
4. The server decrypts the message from the previous step to getKsym.
5. The client sends a randomly generated number RC to the server (challenge message).
6. The server replies with Enc(Ksym, RC).
7. The client verifies that the server’s response is valid.
8. The server sends a randomly generated number RS to the client (challenge message).
9. The client replies with Enc(Ksym, RS).
10. The server verifies that the client’s response is valid.

Midterm - Page 17 of 22

Q7.1 (1 point) Which equation does the client use in Step 7 to verify the server’s response from Step 6
(denoted STEP6)?

(A) Dec(Ksym, STEP6) = RC .

(B) Dec(Ksym, STEP6) = RS .

(C) Dec(Kpwd, STEP6) = RC .

(D) Enc(Ksym, STEP6) = RC .

Q7.2 (1 point) Which option best explains why the two parties don’t use H(pwd) for the final shared
symmetric keyKsym?

Clarification during exam (for 7.2, 7.3, 7.4): Assume that the attacker also records messages encrypted
and MAC-d withKsym after the protocol finishes.

(A) The attacker can brute force values ofH(pwd) and check candidate keys using messages
from the resulting secure channel.

(B) H outputs too many bits to be used as a symmetric key.

(C) H(pwd) would be the same across different authentications.

(D) H(pwd) would require a salt to prevent dictionary attacks.

Q7.3 (2 points) Is it possible for an eavesdropper to dictionary attack pwd given
Enc(Kpwd,RSAEnc(PKserver,Ksym)) from Step 3?

(A) Yes, they can try decrypting Enc(Kpwd,RSAEnc(PKserver,Ksym)) with each guess of
pwd.

(B) Yes, because anyone can evaluate RSAEnc(PKserver,Ksym) and check that
Enc(Kpwd,RSAEnc(PKserver,Ksym)) evaluates to the existing value.

(C) No, because there is no way to tell when a test decryption is successful.

(D) No, because RSAEnc is slow to evaluate, preventing brute force.

Midterm - Page 18 of 22

Q7.4 (2 points) An attacker records all messages sent between a client and server during a successful
login.

Later, the attacker learns the value of SKserver , the server’s secret key (corresponding toPKserver).

Can the attacker learn the value ofKsym from the earlier recorded login?

(A) Yes, because the attacker can try all possible values of pwd and find Ksym.

(B) Yes, because the attacker can try all possible values ofKsym once SKserver is leaked.

(C) No, becauseKsym is randomly generated for each authentication and deleted immediately
afterwards.

(D) No, because there is no way to tell when a test decryption is successful, even if we leak
SKserver .

Midterm - Page 19 of 22

Q7.5 (8 points) Design an attack to successfully pass Step 10 (server verification) without knowing pwd.
Assumptions:
1. You start two simultaneous connections to the server: Connection A and Connection B. The same

server is shown twice in the diagram below.
2. You do not need to verify the server’s response in Step 7.
3. In each of the six boxes below, you can write:

• AStep X or BStep X to denote the value from step X of Connection A/B.
• If any value would work for a box, write the word anything.

Client (Attacker)
ServerServer

(Connection B)(Connection A)

Step 3

Step 3

Step 5

AStep 6

AStep 8

Step 5

BStep 6

BStep 8

Step 9

Step 9

Midterm - Page 20 of 22

Q7.6 (1 point) In which of the two connections does the server successfully verify the challenge response
sent by the client in Step 9?

(A) Connection A (B) Connection B (C) Both connections

Q7.7 (2 points) Which of the following modifications would prevent an optimal attack from Q7.5? Select
all that apply.

(A) Adding an HMAC keyed withKsym on the challenge messages (Steps 5, 8).

(B) Having the server send its challenge message first (i.e. swap steps 5-7 with steps 8-10).

(C) Replacing Step 6 with "The server replies with Enc(Ksym, RC∥RS)"

(D) Generating the challenge numbers using the output of a PRNG seeded with pwd.

(E) None of the above

Midterm - Page 21 of 22

Nothing on this page will affect your grade.

Post-Exam Activity
What is Mallory cooking?

Comment Box
Congratulations for making it to the end of the exam! Feel free to leave any thoughts, comments,
feedback, or doodles here:

Midterm - Page 22 of 22

