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For questions with circular bubbles, you may
select only one choice.

Unselected option (completely unfilled)
Only one selected option (completely filled)
Don’t do this (it will be graded as incorrect)

For questions with square checkboxes, you may
select one or more choices.

You can select
multiple squares (completely filled)

Anything you write outside the answer boxes or
you cross out will not be graded. If you write mul-
tiple answers, your answer is ambiguous, or the
bubble/checkbox is not entirely filled in, we will
grade the worst interpretation.

Pre-exam activity (0 points):
It’s Leap Day, which means it’s time for the quadrennial
Leap-Frog Race! Everyone entered their frogs into the
contest, but unfortunately the results got mixed up. Evan-
Bot needs your help to piece together the standings from
eyewitness reports!

1. Alice: "Bob’s frog was right behind EvanBot’s frog."

2. Bob: "CodaBot’s frog was somewhere ahead of mine."

3. CodaBot: "I couldn’t tell whose it was, but there was a
frog with a hat somewhere ahead of Mallory’s frog."

4. Eve: "My frog was always ahead of Alice’s frog."

5. Mallory: "My frog definitely finished before CodaBot’s
frog. I’m telling the truth, I promise."

Circle the winning frog.

Q1 Honor Code (0 points)
I understand that I may not collaborate with anyone else on this exam, or cheat in any
way. I am aware of the Berkeley Campus Code of Student Conduct and acknowledge
that academic misconduct will be reported to the Center for Student Conduct and may
further result in, at minimum, negative points on the exam.
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Read the honor code above and sign your name:
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Q2 True/False (16 points)
Each true/false is worth 1 point.

Q2.1 The Mallory Security Agency requires 128-bit AES encryption for all data, and "Top Secret" data is
encrypted with an additional 256-bit key stored in a separate location.

True or False: This is an example of Defense in Depth.

(A) True (B) False

Solution: True, the top-secret data has two layers of defenses. The defenses are considered
separate because the key is in a different location.

Q2.2 Devices storing cryptographic keys are often required to be fitted with tamper-evident seals.

True or False: This is an example of Detect If You Can’t Prevent.

(A) True (B) False

Solution: True. Tamper-evident seals might not be able to stop all attacks, but they will leave
a signal that the seal was broken, which allows us to detect that an attack has happened.

Q2.3 True or False: All strings in C are terminated with the character '\n'.

(A) True (B) False

Solution: False. Strings are terminated with the null terminator, '\x00'.

Q2.4 True or False: Enabling non-executable pages prevents the ret2libc attack.

(A) True (B) False

Solution: False. The ret2libc attack works by executing instructions that already exist in the
code segment of memory.
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For the next 2 subparts: Suppose we have a little-endian C program with a local variable char buf[8].
Consider the following possible GDB output after running the command x/4wx buf:

0xffffff58: 0x61657270 0x0000006d 0xc0dab0bb 0xbaa15691

Q2.5 True or False: The words 0x61657270 and 0x0000006d correspond to the data in buf.

(A) True (B) False

Solution: True. These are the first 8 bytes in the memory dump (which starts at buf).

Q2.6 True or False: buf[9] is 0xda.

(A) True (B) False

Solution: False, buf[9] would be 0xb0.

Q2.7 True or False: Every nondeterministic (randomized) encryption scheme is IND-CPA secure.

(A) True (B) False

Solution: False. It’s possible for a nondeterministic scheme to still leak information about
the message.

As an example, consider Enc(K,M) = M∥R, whereR is a block of random bits. This trivially
leaks the entire contents of the message, even though the scheme is nondeterministic.

Q2.8 True or False: If Alice encrypts a message to Bob using ElGamal, an eavesdropper who can solve
the discrete log problem would be able to correctly decrypt the message.

(A) True (B) False

Solution: True. ElGamal relies on the same assumptions as Diffie-Hellman, which includes
the hardness of the discrete log problem.

Q2.9 True or False: Digital signature schemes often encrypt the message before signing to prevent
existential forgery attacks.

(A) True (B) False

Solution: False, Digital signatures hash, not encrypt, their messages.
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Q2.10 True or False: AES-CTR does not require the message to be padded.

(A) True (B) False

Solution: True. We can throw away the unused bits of the block cipher output before
computing a bitwise XOR of the block cipher output and the plaintext.

Q2.11 True or False: HMAC is equivalent to NMAC withK1 = K2.

(A) True (B) False

Solution: False. The key is XOR’d with different pads in the inner/outer hash functions.

Q2.12 True or False: Using the output of a PRNG as the key for a one-time pad provides perfect security,
even against an attacker with infinite computational power.

(A) True (B) False

Solution: False. An attacker with infinite computational power could try all the possible
initial seeds for the PRNG, generate PRNG output for each possible seed, and use each possible
seed to try and decrypt the ciphertext.

Q2.13 True or False: Length-extension attacks are often used to break the collision resistance of a hash
function.

(A) True (B) False

Solution: False, the length-extension attack is concerned with creating H(K∥M∥x) given
H(K∥M), but the two hashes aren’t the same.

Q2.14 True or False: The security of Diffie-Hellman relies on the modulus being difficult to factor.

(A) True (B) False

Solution: False. The modulus in Diffie-Hellman is prime, so there’s no point to factoring it.
The difficulty of factoring a product of two large primes is used in RSA, not Diffie-Hellman.
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Q2.15 True or False: The security of ElGamal relies on the difficulty of finding gab mod p given
ga, gb mod p.

(A) True (B) False

Solution: True, this is the Diffie-Hellman problem. The security of ElGamal relies on the
Diffie-Hellman problem.

Q2.16 True or False: Certificates are generally not sent over insecure channels due to the risk of a replay
attack.

(A) True (B) False

Solution: False, certificates are public values and anyone can copy them if they want.
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Q3 ’Tis But a Scratch (16 points)
King Arthur and his knights are searching for the Holy Grail. They find a castle protected by the
following vulnerable C code:

1 void c a s t l e ( ) {
2 i n t 8 _ t ho ly_hand_grenade ;
3 char [ 1 6 ] h o l y _ g r a i l ;
4 char [ 1 2 8 ] cave ;
5
6 / / Imp l emen t a t i o n no t shown .
7 f i n d _ g r a i l ( h o l y _ g r a i l ) ;
8
9 memset ( cave , 0 , 1 2 8 ) ;
10
11 f r e a d (& holy_hand_grenade , 1 , 1 , s t d i n ) ;
12
13 i f ( ho ly_hand_grenade >= 128 ) {
14 return ;
15 }
16
17 f r e a d ( cave , holy_hand_grenade , 1 , s t d i n ) ;
18 p r i n t f ( "%s " , cave ) ;
19 }

Stack at Line 8

RIP of castle

(1)

(2)

(3)

cave

The find_grail function writes a secret 16-byte string to holy_grail, and it’s your job to make the
program output the holy_grail string! You can assume find_grail does not modify the stack in
any other way.

Q3.1 (1 point) What values go in blanks (1) through (3) in the stack diagram above?

(A) (1) SFP of castle (2) holy_hand_grenade (3) holy_grail
(B) (1) SFP of castle (2) holy_grail (3) cave
(C) (1) RIP of castle (2) holy_grail (3) holy_hand_grenade
(D) (1) &holy_grail (2) RIP of find_grail (3) SFP of find_grail

Q3.2 (1 point) Which vulnerability is present in the code?

(A) Off-by-one
(B) Format string vulnerability

(C) Signed/unsigned vulnerability
(D) Heap overflow

Solution: holy_hand_grenade is a signed type int8_t, but the fread function takes in an
unsigned type size_t.
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In the next two subparts, provide inputs that would cause the program to output the holy_grail
string (possibly as part of a larger output).

If a part of the input can be any non-zero value, use 'A'*n to represent the n bytes of garbage.

Q3.3 (4 points) Input to fread at Line 11:

Solution: \xff

Other values would also work, as long as the byte, when read as an unsigned number, is at
least 128.

Q3.4 (4 points) Input to fread at Line 17:

Solution: 'A' * 128

This overwrites all the null bytes in cave, so that the printf at Line 18 prints past the end of
cave and prints out holy_grail.

Alternate solution: 'A'*n where n > 128. This only works if the answer to Q3.3 is exactly
\x80 (which is exactly 128 in two’s complement signed representation), because this would
cause the fread call to stop after 128 characters are written to memory.

If the answer to Q3.3 is not \x80, then this alternate solution fails, because it will overwrite
holy_grail.
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The next four subparts are independent from each other.

Q3.5 (1 point) Would it still be possible for your exploit to leak holy_grail if
fread(&holy_hand_grenade, 1, 1, stdin) on Line 11 is replaced with
gets(&holy_hand_grenade)?

(A) Yes, because gets would allow the attacker to overwrite the address of cave.

(B) Yes, because holy_hand_grenade is above holy_grail in the stack diagram.

(C) No, the null terminator added by gets will cause the final printf to terminate before
reaching holy_grail.

(D) No, because the null terminator added by gets will partially overwrite the SFP of
castle.

Solution: Yes, the exploit is still possible. gets can still overwrite the single byte of
holy_hand_grenade.

While it is true that gets appends a null terminator, this won’t affect our exploit. If we assume
there is no padding for address alignment, then the null byte is written into the SFP of castle,
which is not used in our exploit.

If we assume there is padding, then the null byte is written into the padding, where the null
byte doesn’t affect program execution.

Choice (A) is incorrect because gets writes from lower to higher memory addresses, and
would not allow the attacker to overwrite the address of cave.
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Q3.6 (1 point) Would it still be possible for your exploit to leak holy_grailwith stack canaries enabled?

(A) Yes, because the exploit writes around the canary to overwrite values above the canary.

(B) Yes, because the exploit never tries overwriting values above the canary.

(C) No, because all 4 bytes of the canary are overwritten by garbage.

(D) No, because the least-significant byte of the canary is overwritten by a null byte.

Solution: Yes, the exploit is still possible, because we never overwrite above the local variables,
and the stack canary is located above the local variables.

This is somewhat moot because the printf would run before the function returns anyway (so
holy_grail’s value would be leaked before the program crashes on a failed canary check).

Choice (A) is incorrect because the exploit never attempts to write to any values above the
canary. We only overwrite the local variables.

Q3.7 (1 point) Would it still be possible for your exploit to leak holy_grail with non-executable pages
enabled?

(A) Yes, because the exploit never writes any executable instructions on the stack.

(B) Yes, because the malicious instructions being executed are not on the stack.

(C) No, because the exploit writes executable instructions on the stack.

(D) No, because non-executable pages stops the exploit from writing anything on the stack.

Solution: Yes, the exploit is still possible, because the exploit does not write any executable
instructions on the stack.

Choice (B) is incorrect because there are no malicious instructions being executed. All of the
instructions being executed are instructions that were already in the code section of memory
(the malicious part of the exploit is just causing printf("%s", cave) to not find a null
terminator and print out-of-bounds).
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Q3.8 (1 point) Would it still be possible for your exploit to leak holy_grail with ASLR enabled?

(A) Yes, because the exploit does not require knowing any absolute addresses.

(B) Yes, because the printf call will always leak an address on the stack.

(C) No, because we need to know the address of holy_grail in order to leak its value.

(D) No, because we need to know the address of castle in order to complete the exploit.

Solution: Yes, the exploit is still possible, because the exploit doesn’t require using any
absolue addresses.

Choice (B) is false because printf is not guaranteed to leak addresses on the stack. For example,
printf("%s", cave) may only print out the contents of cave, which is not guaranteed to
contain a memory address.

For the following subparts, your goal is now to execute a 72-byte shellcode, rather than leaking
holy_grail.

Q3.9 (1 point) Assuming no memory safety defenses are enabled, would it be possible to exploit this
program to execute shellcode?

(A) Yes (B) No

Solution: By inputting \xff on Line 11, we can now write up to 255 bytes into memory on
Line 17, which is more than enough to write the 72-byte shellcode and also overwrite the RIP
to point to shellcode.
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Q3.10 (1 point) Assuming canaries are enabled, would it still be possible to exploit this program to
execute shellcode?

(A) Yes, because we can leak the canary and overwrite the canary with itself.

(B) Yes, because the printf call can write directly to the RIP, skipping the canary.

(C) No, because we run the final fread before we can leak the canary.

(D) No, because it is not possible to run shellcode at all in this program.

Solution: No, this exploit is no longer possible.

The naive exploit from the previous subpart doesn’t work because fread writes contiguously
from lower to higher memory addresses, which would cause the canary to be overwritten
before the RIP gets overwritten.

You could try and use the printf call to somehow leak the canary value (and write it back
later), but this won’t work either, because the fread call comes before the printf call. By
the time you need to supply an input to fread, the printf call has not executed yet.

Choice (D) is incorrect because without stack canaries, it is possible to run shellcode in this
program.
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Q4 I Sawed This Shellcode In Half! (16 points)
Consider the following vulnerable C code:

1 void boa t ( void ∗ s h e l l c o d e _ f i r s t _ h a l f , void ∗ s h e l l c o d e _ s e c o n d _ h a l f ) {
2 / / f p c o n t a i n s t h e a d d r e s s o f t h e f g e t s f u n c t i o n
3 u i n t p t r _ t fp = ( u i n t p t r _ t ) f g e t s ;
4
5 char [ 3 2 ] buf ;
6 char ∗ bu f _ p t r = &buf ;
7
8 f g e t s ( buf , 3 2 , s t d i n ) ;
9 p r i n t f ( buf ) ;
10
11 f g e t s ( buf , 3 2 , s t d i n ) ;
12 p r i n t f ( buf ) ;
13 }

This is the result of running disas fgets in GDB:

1 0 x08076030 : push %ebp
2 0 x08076034 : mov %esp , %ebp
3 0 x08076038 : sub %ebp , 20
4 . . .
5 0 x08076050 : mov %ebp , %esp
6 0 x08076054 : pop %ebp
7 0 x08076058 : r e t

shellcode_first_half is a pointer to the first half of shellcode and shellcode_second_half is a
pointer to the second half of shellcode. Both halves of shellcode have a ret instruction at the end.

Assumptions:

• ASLR is enabled, but all other memory safety defenses are disabled.
• The program can print an arbitrarily large number of bytes using printf.
• All addresses are at least 0x01000000.
• esp is not modified by the shellcode.
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Q4.1 (2 points) Which of these inputs to the fgets on Line 8 will always leak the values of all the local
variables in the boat stack frame? Select all that apply.

(A) "%x" * 10

(B) "%s" * 10

(C) "%n" * 10

(D) "%c" * 10

(E) "%d" * 10

(F) None of the above

Solution: %x and %d both read values directly off the stack (as hexadecimal or decimal
numbers) and prints them out. Repeating many of these formatters will cause subsequent
values on the stack to each get printed out.

%c will not work because each %c reads 4 bytes off the stack but only prints out 1 byte. This
will not allow us to learn the entire value of all the local variables.

%n will not work because it produces no output (it writes to memory instead).

Note that %s does not work, because even though the first %smatches up to buf_ptr = &buf,
the fgets will add a null byte to buf, preventing the program from printing any memory past
the end of buf.

Then, subsequent %s formatters will get matched up to values inside buf, and there’s no
guarantee that any of the values inside buf are addresses on the stack (so that %s would
dereference them and print out values on the stack). Note that the question asks for inputs
that will always leak the values of all local variables.
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Now that we have the values of all the local variables in the boat stack frame, we need to compute two
values to use later in our exploit.

You can assume that the values outputted from the printf on Line 9 have all been converted to integers
that you can perform arithmetic on.

Q4.2 (2 points) Which of these values do we need to use later in our exploit?

&buf is the address of buf, which you leaked in Q4.1.

Hint: What is the address in memory we want to write to?

(A) &buf - 4

(B) &buf

(C) &buf + 32

(D) &buf + 36

(E) &buf + 40

(F) &buf + 44

Solution: This is the address of the RIP.

[&buf + 48] shellcode_first_half
[&buf + 44] shellcode_first_half
[&buf + 40] RIP of boat
[&buf + 36] SFP of boat
[&buf + 32] fgets
[&buf + 0] buf
[&buf - 4] buf_ptr

Q4.3 (2 points) Which of these values do we need to use later in our exploit?

fp is the address of the fgets function, which you leaked in Q4.1.

Hint: What is the value we want to write into memory?

(A) fp

(B) fp + 0x4

(C) fp + 0x8

(D) fp + 0x20

(E) fp + 0x24

(F) fp + 0x28

Solution: This is the address of the ret instruction, which is the value we’ll be overwriting
the RIP with.
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Let x be the value you computed in Q4.2, and y be the value you computed in Q4.3.

You can perform arithmetic on these values (e.g. x + 5), and you can assume that the resulting value
is converted to the proper format (e.g. raw bytes, or decimal representation), so you don’t have to
manually do any conversions.

If a part of the input can be any non-zero value, use 'A'*n to represent the n bytes of garbage.

Q4.4 (8 points) Provide an input to the fgets call on Line 11 that will execute shellcode.

+ + '%c' + '% u' + '%n'

Solution: 'A'*4 + x + '%c' + '% (y-9) u' + '%n'

First box: 'A'*4, which will be consumed by the %u.

Second box: x. This is the address of the RIP, which is consumed by the %n.

Third box: (y-9). The value we want to write into memory is y (the address of ret), but
we’ve already printed 9 bytes so far, so we need to print out (y-9) more bytes so that the
total number of bytes printed so far is y.

[arg3] buf[4:8] (matches to the %n)
[arg2] buf[0:4] (matches to the %u)
[arg1] buf_ptr (matches to the %c)
[arg0] &buf
RIP printf
printf stack frame

This exploit causes the address of ret to be written to the RIP of boat. When boat returns,
we will execute a ret instruction, which causes us to take the next value on the stack,
shellcode_first_half, and start executing the instructions at that address.
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Q4.5 (1 point) If canaries are enabled, would it still be possible to exploit this program to execute
shellcode?

(A) Yes, because the exploit writes directly to the RIP instead of smashing through the canary.

(B) Yes, because overwriting the RIP directly disables the canary check altogether.

(C) No, because all 4 bytes of the canary are overwritten by garbage.

(D) No, because the ret instruction at the end of the first shellcode will fail the canary check.

Solution: The format string vulnerability allows us to write only to the RIP of boat, without
having to contiguously write from lower to higher addresses.

Choice (B) is incorrect because overwriting the RIP does not disable the canary check (which
is some sequence of instructions in the code section of memory).

Q4.6 (1 point) What happens to the exploit if boat is called with the arguments reversed?

In other words, instead of boat(shellcode_first_half, shellcode_second_half), what
if we called boat(shellcode_second_half, shellcode_first_half)?

(A) The instructions of shellcode would all execute in reverse order.

(B) The shellcode would execute unchanged.

(C) The second half of shellcode executes, followed by the first half of shellcode.

(D) The program would crash after returning from boat, but before executing shellcode.

Solution: Now, when the ret instruction executes, the next value on the stack is
shellcode_second_half, so we jump to that address and begin executing the second half
of shellcode.

Per the assumptions in the question, both halves of shellcode end in a ret instruction. At the
end of the second half of shellcode, the ret instruction will take the next value on the stack,
shellcode_first_half, and execute instructions at that address, causing the first half of
shellcode to execute after the second half finishes executing.
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Q5 Challenging Constructions (16 points)
Consider the following encryption scheme:

The encryption formula for this scheme is

Ci = EK(Mi + IV + i)

Q5.1 (1 point) Select the correct decryption formula for the given scheme.

(A)Mi = DK(Ci − IV − i)

(B)Mi = DK(Ci)− IV − i

(C)Mi = DK(Ci) + IV + i

(D)Mi = DK(Ci + IV − i)

Solution: Algebraically, apply DK to both sides, and then add −IV − i to both sides.

To show this scheme is insecure, you want to provide a strategy that always wins the IND-CPA game.

Adversary (you) Challenger

M andM ′

C = (C0, C1)

GuessM orM ′

First, the adversary (that’s you!) sends two different challenge
messages,M ̸= M ′, to the challenger. For your strategy, you
can assumeM andM ′ are each two blocks long.

Then, the challenger randomly encrypts eitherM or M ′. The
resulting two-block ciphertext C = (C0, C1) is returned to you.

Finally, you guess whetherM or M ′ was encrypted.

In this strategy, the query phase is not needed (i.e. you never have to ask the challenger to encrypt
messages of your choosing beforehand).

Assume that the second challenge messageM ′ = (?, ?) is chosen completely at random.

Clarification during exam: Assume that each "?" value is independently randomly generated, so (?, ?) would
not necessarily be two identical values.
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Q5.2 (2 points) What must be true ofM for this strategy to work?

(Note: ? denotes a randomly-chosen value)

(A)M0 = 0 andM1 = ?

(B)M0 = ? and M1 = 0

(C)M0 = ? andM1 = ?

(D)M1 = M0 + 1

(E)M1 = M0 − 1

(F)M0 = M1

Solution: We require that M1 = M0 − 1. In other words, within the two-block message M ,
the second blockM1 has value one less than the first blockM0 (treating both blocks as 128-bit
binary numbers).

See next subpart for why this is useful.

Q5.3 (3 points) The challenger encrypts one of M,M ′ from the previous subparts and returns C =
(C0, C1).

Explain how you would determine whetherM orM ′ was encrypted. Your answer can use these
values:

• M = (M0,M1) andM ′ = (M ′
0,M

′
1)

• C = (C0, C1). Recall: C is either the encryption ofM or M ′.

An example of how you could describe your strategy, that has nothing to do with this question:
If C0 + 161 = M0, guess M . Else, guessM ′.

Solution: If C0 = C1, guessM , otherwise M ′.

If the challenger chooses to encryptM , which has the property that M1 = M0 − 1, then:

C0 = EK(M0 + IV + 0)

= EK(M0 + IV )

C1 = EK(M1 + IV + 1)

= EK(M0 − 1 + IV + 1)

= EK(M0 + IV )

Since EK is a deterministic function for a fixed K , and IV stays the same within a single
encryption, this tells us that whenM is encrypted, we will notice that C0 = C1.

This leads us to the strategy of guessing that M is encrypted if C0 = C1. (Otherwise, we
guess thatM ′ was encrypted.)
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Q5.4 (1 point) What is the probability (excluding negligible factors) that an optimal attacker (i.e. using
the correct answer to Q5.3) wins the IND-CPA game?

(A) 50% (B) 66.7% (C) 75% (D) 100%

Solution: The exact calculations (including negligible factors) aren’t needed to solve this
question, but intuitively speaking:

IfM is encrypted, C0 = C1 will always hold. This means you will always correctly guess that
M was encrypted.

IfM ′ is encrypted, the probability that C0 = C1 is negligible. (See footnote below for more
details). This means that you will almost-always correctly guess thatM ′ was encrypted.

In total, your probability of winning the game is closest to 100% of all the options here.

Footnote: If you encrypt two completely random blocks (M ′
0,M

′
1), then:

C0 = EK(M ′
0 + IV + 0)

C1 = EK(M ′
1 + IV + 1)

In order for C0 = C1 (which would cause us to make an incorrect guess), we would need
M1 = M0−1 to hold (the same assumption that allowed us to guessM earlier). The probability
that two randomly-chosen blocks differ by just 1 is negligible, so we don’t need to consider
this in our probability calculations.

Now consider a modified version of the previous encryption scheme:

The encryption formula for this scheme is

Ci = EK(Mi ⊕ (IV + i))

You want to devise a strategy to win the IND-CPA game.

Assume that the second challenge messageM ′ = (?, ?) is chosen completely at random.

Midterm - Page 20 of 36



Q5.5 (1 point) What value should you pick forM?

(A) (0, ?)

(B) (?, 0)

(C) (?, ?)

(D) (0, 1)

(E) (1, 0)

(F) (1, 1)

Solution: See next subpart for more detailed explanation.
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Q5.6 (5 points) The challenger encrypts one of M,M ′ from the previous subparts and returns C =
(C0, C1).

Explain how you would determine whetherM orM ′ was encrypted. Your answer can use these
values:

• M = (M0,M1) andM ′ = (M ′
0,M

′
1)

• C = (C0, C1). Recall: C is either the encryption ofM or M ′.

Solution: If C0 = C1, guess M , otherwise M ′. (The same strategy as the previous scheme.)

If the challenger chooses to encryptM = (1, 0), then:

C0 = EK(M0 ⊕ (IV + 0))

= EK(1⊕ (IV + 0))

= EK(1⊕ IV )

C1 = EK(M1 ⊕ (IV + 1))

= EK(0⊕ (IV + 1))

= EK(IV + 1)

If the challenger chooses to encryptM = (0, 1), then:

C0 = EK(M0 ⊕ (IV + 0))

= EK(0⊕ (IV + 0))

= EK(IV )

C1 = EK(M1 ⊕ (IV + 1))

= EK(1⊕ (IV + 1))

= EK(IV )

Note that the above only happens when IV is even, meaning the least-significant bit of IV is
0, which happens around half the time.

In summary, if M is encrypted, then around half the time we will get a signal of that by
noticing that C = C ′. This gives us a non-negligible advantage of winning the IND-CPA
game, as we’ll see in the next subpart.
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Q5.7 (3 points) What is the probability (excluding negligible factors) that an optimal attacker (i.e. using
the correct answer to Q5.6) wins the IND-CPA game?

(A) 50% (B)
62.5%

(C)
66.7%

(D) 75% (E)
87.5%

(F) 100%

Justify your answer.

Solution: There are two properties that can differ in each given IND-CPA instance:

1. Whether the IV’s least-significant bit is zero

2. Whether M or M ′ is encrypted

Recall that we guessM if C0 = C1 and M ′ otherwise.

1. IV LSB is zero, M encrypted. In this case, our attack succeeds (C0 = C1) and we guess
M correctly.

2. IV LSB is one, M encrypted. In this case, C0 ̸= C1, so we guessM ′ incorrectly.

3. IV LSB is zero,M ′ encrypted. In this case, C0 ̸= C1 and we guessM ′ correctly.

4. IV LSB is one, M ′ encrypted. In this case, C0 ̸= C1 and we guess M ′ correctly.

Counting the probabilities up gives us 75% chance of success, since each case is equally likely.
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Q6 Authentic Auctions (19 points)
EvanBot wants to hold a charity auction and needs your help! They have designed a secure bidding
protocol as follows:

1. Each party chooses a bid x.
2. Each party applies a function COMMIT to x and broadcasts COMMIT(x) to every other party.
3. Once everyone has posted their commitment, each party reveals their bid and any other informa-

tion relevant to the scheme.

There are two key properties we want to guarantee:

1. Binding: If a party chooses x, sends COMMIT(x), and then reveals x′ ̸= x, other parties can detect
that x′ is invalid with overwhelming probability.

2. Hiding: COMMIT(x) should not leak more than a negligible amount of information about x.

For each of the following schemes, select whether the scheme provides binding, hiding, both, or neither.

You should assume that the range of all possible bids is small enough to brute-force, each
subpart is independent, and the auction is run exactly once. If a reveal step is not specified, assume
that the reveal step is to send x.

Hint: EvanBot says you should reread the above assumptions and make sure you understand them before
proceeding!

Clarification during exam: Assume that all parties have access to the trusted public keys of every other
party.

Q6.1 (1 point) COMMIT(x) = x

(A) Binding (B) Hiding (C) Both (D) Neither

Solution: This is not hiding because we send x in plaintext for other parties to see.

This is binding because an adversary cannot choose x, send x, and later claim to reveal x′ ̸= x.
Other parties would be able to detect that the adversary changed their mind after sending the
commit.

Q6.2 (1 point) COMMIT(x) = H(x).

(A) Binding (B) Hiding (C) Both (D) Neither

Solution: This scheme is not hiding because we can bruteforce all possible x against the
H(x) value that was sent, in order to determine the value of x (see assumptions).

This scheme is binding due to the collision-resistance of H . It is infeasible for an adversary to
find two values x ̸= x′ that both hash to the same output.
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Q6.3 (1 point) COMMIT(x) = EK(x), whereK is a publicly-known symmetric key shared by everyone.

(A) Binding (B) Hiding (C) Both (D) Neither

Solution: This scheme is not hiding because everyone knows K and can decrypt to learn x.

This scheme is binding precisely because everyone can learn the original value of x by
decrypting the COMMIT(x) value, so changing the reveal value will always be detected.

Q6.4 (1 point) COMMIT(x) = x ⊕K , where K is a randomly-generated one-time-pad key. To reveal,
each party sends x,K .

(A) Binding (B) Hiding (C) Both (D) Neither

Solution: This scheme is hiding by virtue of OTP. With no knowledge ofK , other parties
cannot determine the value of x.

This scheme is not binding because we can change our revealed value arbitrarily. Suppose an
adversary chose x, published x⊕K , but wanted to reveal a different x′. Then the adversary
could reveal x′ andK ′ = K ⊕ x⊕ x′.

Other parties would take the published commitment x⊕K , decrypt this with the revealed
K ′, and receive (x⊕K)⊕ (K ⊕ x⊕ x′), and be convinced that the adversary really chose x′
all along.

Q6.5 (1 point) COMMIT(x) = H(x)⊕K , whereK is a randomly-generated one-time-pad key. To reveal,
each party sends x,K .

(A) Binding (B) Hiding (C) Both (D) Neither

Solution: This scheme is perfectly hiding by virtue of OTP. With no knowledge of K , other
parties cannot determine the value of x.

This scheme is not binding because we can change our revealed value arbitrarily. To reveal y
from H(x)⊕K , first evaluate H(y). Then setK ′ = H(x)⊕H(y)⊕K and send y,K ′.
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The properties, repeated for your convenience:

1. Binding: If a party chooses x, sends COMMIT(x), and then reveals x′ ̸= x, other parties can detect
that x′ is invalid with overwhelming probability.

2. Hiding: COMMIT(x) should not leak more than a negligible amount of information about x.

Q6.6 (1 point) COMMIT(x) = H(x⊕K), whereK is a randomly-generated one-time-pad key. To reveal,
each party sends x,K .

(A) Binding (B) Hiding (C) Both (D) Neither

Solution: This scheme is perfectly hiding by virtue of OTP.

This scheme is not binding because we can change our revealed value arbitrarily. To reveal y
from x⊕K , send x′ = y ⊕ x⊕K . The hash function does not affect this, because the final
hash function input doesn’t change.

Q6.7 (1 point) COMMIT(x) = HMAC(K,x), where K is a publicly-known symmetric key shared by
everyone.

(A) Binding (B) Hiding (C) Both (D) Neither

Solution: This scheme is not hiding, because we can bruteforce every possible HMAC(K,x)
(K is fixed).

This scheme is binding due to the collision-resistance of HMAC.

Q6.8 (1 point) COMMIT(x) = Sign(SK, x), where Sign = xd mod N (naive RSA signature) and SK is
the secret key for the user sending the bid.

(A) Binding (B) Hiding (C) Both (D) Neither

Solution: This scheme is not hiding, because we can immediately leak x from xd mod N by
raising it to the power of e (part of the public key).

This scheme is binding because we can immediately leak x from the original scheme (among
other reasons).
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Q6.9 (1 point) COMMIT(x) = Sign(SK, x), where Sign = H(x)d mod N (hash-based RSA signature).

(A) Binding (B) Hiding (C) Both (D) Neither

Solution: This scheme is not hiding, because we can immediately leakH(x) fromH(x)d mod
N by raising it to the power of e (part of the public key). GivenH(x) we can bruteforce x per
the question assumptions.

This scheme is binding because we can immediately leak H(x) from the original scheme
(among other reasons).

Q6.10 (1 point) COMMIT(x) = gx mod p, where g is a generator and p is large prime (like in Diffie-
Hellman).

(A) Binding (B) Hiding (C) Both (D) Neither

Solution: This scheme is not hiding, because we can bruteforce all gx mod p.

This scheme is binding because gx is a unique value modulo p given that g is a generator.

Q6.11 (1 point) Note: (x, y) denotes a tuple of two values, x and y.

COMMIT(x) =

{︄
(x, x+ 1) with probability 0.5
(x− 1, x) with probability 0.5

(A) Binding (B) Hiding (C) Both (D) Neither

Solution: This scheme is not hiding, because we can learn, within 1, the value of x, which
leaks some information about x.

This scheme is not binding because you could choose x, send (x, x+ 1), and claim that your
bid was actually x+ 1.

Specifically, EvanBot might choose x = 4, and send (4, 5). Then, EvanBot could claim that
their bid was actually x′ = 5, and that they sent (x− 1, x) = (4, 5). Other users cannot detect
whether EvanBot’s bid was x = 4 or x′ = 5, since the commit (4, 5) is valid for both bids.
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The properties, repeated for your convenience:

1. Binding: If a party chooses x, sends COMMIT(x), and then reveals x′ ̸= x, other parties can detect
that x′ is invalid with overwhelming probability.

2. Hiding: COMMIT(x) should not leak more than a negligible amount of information about x.

Q6.12 (8 points) Design a commitment scheme that was not mentioned in a previous subpart. Your
scheme should be both binding and hiding.

Assume you have access to an unlimited source of random bits.

Given x, how do you compute COMMIT(x)?

Solution: There are many possible solutions, the most common being:

• H(x∥r) for random r,

• HMAC(K,x) for randomK

• H(x)⊕H(K)

The core idea is that we need some sort of randomness to avoid brute-force (hiding), and some
sort of one-way, collision resistant function to achieving binding.

HMAC(K,x) works because it is similar H(x∥R), with K being the source of ran-
domness inside a hash function. Lots of submissions used HMAC(K,EK(x)) or
(Enc(K,x),HMAC(K,Enc(K,x))) but this was unnecessary – HMAC(K,x) by itself is hid-
ing ifK is unknown and randomly generated.

There was an edge case for our definitions: EK(x) for randomly generated (private)K . The
intentionwas this was not binding, since we can generate a new keyK ′, runDK′(EK(x)) = x′

to get a new x′,K ′ pair that will validate correctly. However, the assumption that the range of
valid bids is small enough to brute-force means the probability this new x′ is valid is negligible,
so we are giving credit for this response.

See the box on the next page for some examples of incorrect schemes.

List of values sent in the reveal step (including x):

Solution: For H(x∥r) we would send x, r.

List of steps to verify COMMIT(x) given the values from the reveal step:

Solution: Reconstruct H(x∥r) from x, r and check that it matches COMMIT(x).
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Solution:

Some common ideas that do NOT work:

gxr mod p for random x. We can change x to x′ as long as we also change r to r′ such that
x′r′ ≡ xr mod (p− 1). This works when x′ is invertible modulo p− 1, which for correctly-
chosen p is about 50%. (Essentially this is equivalent to solvingAr = xr mod N whereA = x′

(the new x value), so we can solve it if A is invertible. Therefore we just need to pick a new x′

that is coprime to p− 1.

xr mod p for random r. Represent x = gk mod p for some generator g. Thus xr ≡ gkr mod p.
Like in the previous example, we can find k′, r′ such that k′r′ ≡ kr mod (p − 1), then set
x = gk

′
mod p. It’s not too difficult to make sure these new x are valid bids.

Any scheme that has x⊕K or x⊕R as some input, since we can replace xwith x′ and change
K to be K ′ = K ⊕ x⊕ x′.

H(x∥s) for a publicly-known salt s. We can bruteforce x because we know all the other inputs
to H , so this is not hiding.
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Q7 Ephemeral Exchanges (17 points)
Consider the following authentication protocol. pwd is a standard-strength password (i.e. vulnerable to
brute-force). PKserver is a long-term, trusted public key for the server. Assume there’s only a single
user/password stored on the server.

Client Server

1. ComputeKpwd = H(pwd)1. ComputeKpwd = H(pwd)

2. GenerateKsym randomly

3. Enc(Kpwd,RSAEnc(PKserver,Ksym))

4. Decrypt to getKsym

5. RC (random challenge message)

6. Enc(Ksym, RC)

7. Verify Step 6

8. RS (random challenge message)

9. Enc(Ksym, RS)

10. Verify Step 9

Here is an equivalent description of the protocol:

1. Both the client and server deriveKpwd = H(pwd).
2. The client generates a random symmetric keyKsym.
3. The client sends Enc(Kpwd,RSAEnc(PKserver,Ksym)) to the server.
4. The server decrypts the message from the previous step to getKsym.
5. The client sends a randomly generated number RC to the server (challenge message).
6. The server replies with Enc(Ksym, RC).
7. The client verifies that the server’s response is valid.
8. The server sends a randomly generated number RS to the client (challenge message).
9. The client replies with Enc(Ksym, RS).
10. The server verifies that the client’s response is valid.
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Q7.1 (1 point) Which equation does the client use in Step 7 to verify the server’s response from Step 6
(denoted STEP6)?

(A) Dec(Ksym, STEP6) = RC .

(B) Dec(Ksym, STEP6) = RS .

(C) Dec(Kpwd, STEP6) = RC .

(D) Enc(Ksym, STEP6) = RC .

Solution: The server sends STEP6 = Enc(Ksym, RC), so Dec(Ksym, STEP6) =
Dec(Ksym,Enc(Ksym, RC)) = RC .

Q7.2 (1 point) Which option best explains why the two parties don’t use H(pwd) for the final shared
symmetric keyKsym?

Clarification during exam (for 7.2, 7.3, 7.4): Assume that the attacker also records messages encrypted
and MAC-d withKsym after the protocol finishes.

(A) The attacker can brute force values ofH(pwd) and check candidate keys using messages
from the resulting secure channel.

(B) H outputs too many bits to be used as a symmetric key.

(C) H(pwd) would be the same across different authentications.

(D) H(pwd) would require a salt to prevent dictionary attacks.

Solution: If the parties encrypted/MAC-d all their real messages withKpwd, then the attackers
can bruteforce all possible pwd, derive the respective Kpwd, and try verifying a MAC to check
if the guess is right.
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Q7.3 (2 points) Is it possible for an eavesdropper to dictionary attack pwd given
Enc(Kpwd,RSAEnc(PKserver,Ksym)) from Step 3?

(A) Yes, they can try decrypting Enc(Kpwd,RSAEnc(PKserver,Ksym)) with each guess of
pwd.

(B) Yes, because anyone can evaluate RSAEnc(PKserver,Ksym) and check that
Enc(Kpwd,RSAEnc(PKserver,Ksym)) evaluates to the existing value.

(C) No, because there is no way to tell when a test decryption is successful.

(D) No, because RSAEnc is slow to evaluate, preventing brute force.

Solution: A successful test decryption would produce RSAEnc(PKserver,Ksym), which
appears random sinceKsym was randomly generated.

Q7.4 (2 points) An attacker records all messages sent between a client and server during a successful
login.

Later, the attacker learns the value of SKserver , the server’s secret key (corresponding toPKserver).

Can the attacker learn the value ofKsym from the earlier recorded login?

(A) Yes, because the attacker can try all possible values of pwd and find Ksym.

(B) Yes, because the attacker can try all possible values ofKsym once SKserver is leaked.

(C) No, becauseKsym is randomly generated for each authentication and deleted immediately
afterwards.

(D) No, because there is no way to tell when a test decryption is successful, even if we leak
SKserver .

Solution: If we remember the solution from 7.3, a test decryption using Kpwd gives
RSAEnc(PKserver,Ksym), which we can now also decrypt since we are given SKserver .
Now we would have aKsym to test verify on a real message from the resulting secure channel.
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Q7.5 (8 points) Design an attack to successfully pass Step 10 (server verification) without knowing pwd.
Assumptions:
1. You start two simultaneous connections to the server: Connection A and Connection B. The same

server is shown twice in the diagram below.
2. You do not need to verify the server’s response in Step 7.
3. In each of the six boxes below, you can write:

• AStep X or BStep X to denote the value from step X of Connection A/B.
• If any value would work for a box, write the word anything.

Client (Attacker)
ServerServer

(Connection B)(Connection A)

Step 3

Step 3

Step 5

AStep 6

AStep 8

Step 5

BStep 6

BStep 8

Step 9

Step 9
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Solution:

1. Connection B step 3: anything
2. Connection A step 3: BStep 3

3. Connection A step 5: anything
4. Connection B step 5: AStep 8

5. Connection A step 9: BStep 6

6. Connection B step 9: anything

The key idea here is to force both connections to have the same Ksym by using the same value in
step 3. From there, we can send any value for connection A step 5 (client challenge) and ignore
the server’s response in step 6 since we don’t need to verify it. Next, the server’s challenge is
given in AStep 8. To pass it, we use AStep 8 as the client challenge for connection B, so the server
returns Enc(Ksym, AStep 8) in connection B step 6. This is the value the server expects from us in
connection A, so we send it in connection A step 9 to pass the server’s challenge. We only need one
connection to succeed, so we can send anything for connection B step 9 (which causes connection
B to fail).

Alternate solutions for step 3 are possible as long as both connections have the same value for step
3. However, any solution that uses Kpwd does not earn credit, since the premise of this question is
that the attacker does not know pwd.

Q7.6 (1 point) In which of the two connections does the server successfully verify the challenge response
sent by the client in Step 9?

(A) Connection A (B) Connection B (C) Both connections

Solution: See above.
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Q7.7 (2 points) Which of the following modifications would prevent an optimal attack from Q7.5? Select
all that apply.

(A) Adding an HMAC keyed withKsym on the challenge messages (Steps 5, 8).

(B) Having the server send its challenge message first (i.e. swap steps 5-7 with steps 8-10).

(C) Replacing Step 6 with "The server replies with Enc(Ksym, RC∥RS)"

(D) Generating the challenge numbers using the output of a PRNG seeded with pwd.

(E) None of the above

Solution: The first option prevents the attack because we have no way of either replaying or
creating an HMAC on the client’s challenge message.

Having the server send its challenge message first does prevent the attack, as we can never
get past this step in order to have the server answer its own challenge.

Having the server’s challenge include both RC and RS does help, as we can never use a
server’s response as a reply to its own challenge, as the format will be different from a normal
client response.

Generating the challenge numbers using the output of a PRNG seeded with pwd does not help
as we simply replay existing messages.
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Nothing on this page will affect your grade.

Post-Exam Activity
What is Mallory cooking?

Comment Box
Congratulations for making it to the end of the exam! Feel free to leave any thoughts, comments,
feedback, or doodles here:
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