CS 161 Introduction to

Spring 2025 Computer Security

Midterm

Solutions last updated: Mar 15, 2025
Name:

Student ID:

This exam is 110 minutes long.

Question: | 1 213 4

Points: 0 |12] 18 20

Question: | 5 | 6 | 7 | Total

Points: 16 | 16 | 18 | 100

For questions with circular bubbles, you may
select only one choice.

QO Unselected option (completely unfilled)
@ Only one selected option (completely filled)
@ Don’t do this (it will be graded as incorrect)

For questions with square checkboxes, you may
select one or more choices.

B You can select

B multiple squares (completely filled)

Anything you write outside the answer boxes or
you eress-out will not be graded. If you write mul-
tiple answers, your answer is ambiguous, or the
bubble/checkbox is not entirely filled in, we may
grade the worst interpretation.

Pre-exam activity (0 points):

e
{

1

dqowz>» <M

Artwork by Anonymous

EvanBot here, EvanBot there, EvanBot everywhere!
Draw EvanBot from a different angle.

Ql Honor Code

(0 points)

I understand that I may not collaborate with anyone else on this exam, or cheat in any
way. | am aware of the Berkeley Campus Code of Student Conduct and acknowledge
that academic misconduct will be reported to the Center for Student Conduct and may
further result in, at minimum, negative points on the exam.

Midterm - Page 1 of 27

Read the honor code above and sign your name:

Midterm - Page 2 of 27

Q2 True/False (12 points)
Each true/false is worth one point.

Q2.1 The Caltopia Space Agency only allows a few critical employees to control a space shuttle’s flight
path, while the rest of the employees only get enough access to carry out their work.

TRUE or FALSE: This is an example of Least Privilege.

@ (A) TruE O (B)FarLse

Q2.2 EvanBot designs a system that uses HMAC-DRBG with a truly random seed to generate secret
keys used for symmetric encryption.

TRUE or FALSE: Based on Shannon’s Maxim, we should assume that the attacker knows EvanBot is
using HMAC-DRBG and can predict the generated secret key.

O (A) TrRuE @ (B)Farse

For the next two subparts: Suppose we have a little-endian C program with a local variable char
pancake[8]. Consider the following GDB output after running the command x/4wx pancake:

0xfffd7014: Oxdeadbeef Oxffffffff Oxffff70ac 0x00000000

Q2.3 TruEk or Faisk: The value of pancake[8] is 0x£ff.

O (A) TruE @ (B) FALsE
Q2.4 TRUE or FaLsE: The value of pancake[0] is Oxef.

@ (A) TruE O (B)FarLse

Q2.5 TRUE or FaLsE: The first listed variable of a struct is stored at the lowest address.

@ (A) TruE O (B)FarLse

Q2.6 TRUE or FaLse: During a function call in x86, arguments are pushed onto the stack in the order
they appear in the function definition.

O (A) TrUE @ (B) FALsE

Q2.7 TrUE or FALsE: A buffer overflow vulnerability is impossible when stack canaries are enabled,
because canaries protect the entire stack from arbitrary overwrites.

O (A) TruE @ (B) FaLse

Q2.8 TRUE or FaLse: CBC mode encryption is IND-CPA secure even if the IV is reused across multiple
encryptions with the same key.

O (A) TruE @ (B)Faise

2.9 TRUE or FALSE: encryption without proper padding schemes (e.g., 1S - secure,
T F RSA ypti ithout proper padding sch g., OAEP) is IND-CPA
provided the key size is sufficiently large.

O (A) True @ (B) FALse

Midterm - Page 3 of 27

Q2.10 TrUE or FALsE: Rollback resistance ensures that an attacker cannot guess the next generated bit in
a pseudorandom number generator.

O (A) TruE @ (B)Farse

Q2.11 TrUE or FaLsE: Public-key encryption is used in hybrid encryption because it can encrypt large
amounts of data quickly.

O (A) TruE @ (B) FaLse

Q2.12 TrUE or FALSE: One-time pads are inconvenient because the keys can never be reused and need to
be at least as long as the plaintext.

@ (A) TruE O (B)FarLse

Midterm - Page 4 of 27

Q3 Pigeons In the Coal Mines - Memory Safety (18 points)

O 0 3 N U b W N

10
11
12

Consider the following vulnerable C code:

void foo () {
h fl16];
char buf[16] RIP of main
fread(buf, 1, 16, stdin); SFP of main
printf("%s", buf);
gets (buf); (1)
} ()
int mainQ) { SFP of foo
foo O); (3)
return O0;
1 buf
Assumptions:

« Stack canaries are enabled, but no other memory safety defenses are enabled.
 You can use SHELLCODE as a 20-byte shellcode.
+ You run GDB once and find that the address of buf is 0xffffffa0.

Q3.1 (1 point) Fill the blanks in the stack diagram, assuming the program is paused on Line 3.

O (A)(1) canary (2) buf (3) RIP of foo

@ (B) (1) canary (2) RIP of foo (3) canary

O (C) (1) RIP of foo (2) canary (3) canary

O (D)(1) canary (2) RIP of foo (3) SFP of foo
Q3.2 (1 point) What type of vulnerability is present in this code?

QO (A) Format string vulnerability O (C) Signed/unsigned

@ (B) Buffer overflow O (D) Off-by-one

In the next three subparts, provide an exploit that executes SHELLCODE.
Q3.3 (2 points) Give an input to fread on Line 4.
If a part of the input can be any non-zero value, use "A"*n to represent n bytes of garbage.
O A) "A"*12 + "\xaO\xff\xff\xff" @ (C)"A"*16
O B)"A"*12 + "\xb8\xff\xff\xff" O (D) "A"*15 + "\x00"

Q3.4 (2 points) Let OUTPUT be the value printed by the program from the printf on Line 5. Which
slice of OUTPUT gives the value of the stack canary, assuming you have the correct input to the
previous subpart?

Note: For example, [0:4] means the first four bytes of OUTPUT.

O (A) [0:4] O (C) [8:12] @ (E) [16:20]
O (B) [4:8] O (D) [12:16] O (F) [20:24]

Midterm - Page 5 of 27

Q3.5 (2 points) Let CANARY be the correct slice of OUTPUT from the previous subpart.
Give an input to gets on Line 6.
@ (A)"A"*16 + CANARY + "A"*4 + "\xbc\xff\xff\xff" + SHELLCODE
B) "A"*16 + CANARY + "A"*4 + "\xb8\xff\xff\xff" + SHELLCODE

O (
QO (C) SHELLCODE + CANARY + "\xaO\xff\xff\xff"
O (D) SHELLCODE + "A"*4 + CANARY + "\xaO\xff\xff\xff"

Solution: The goal of this exploit is to first leak the canary via printf, then use it in a stack
smash to overwrite the RIP. Accordingly, our input to fread is "A"*16, which removes any
potential null terminators between the start of buf and the canary itself. The canary is then
printed by printf("%s", buf) inthe [16:20] slice, since the canary is right after buf on
the stack diagram.

Then our full exploit is 16 bytes of garbage, the canary to overwrite itself, another 4 bytes of
garbage for the SFP, &RIP + 4, and then SHELLCODE.

Q3.6 (2 points) Which memory safety defenses, when enabled alongside stack canaries, would cause
the correct exploit (without modifications) to fail? Consider each choice independently.

Note: For the PACs option only, assume the system is 64-bit (the exploit remains unchanged).

Hl (A) Pointer authentication codes O (C) None of the above
B (B) Non-executable pages

Solution: PACs: Disregarding any issues caused by the longest addresses, our exploit as-is
uses RIP+4, which involves modifying a pointer.

NX pages: The exploit as-is executes SHELLCODE on the stack, and would therefore crash via
NX pages.

For this rest of this question, ASLR and stack canaries are both enabled. In the next two subparts,
provide an exploit that executes SHELLCODE.

Q3.7 (3 points) Give an input to fread on Line 4.

If a part of the input can be any non-zero value, use "A"*n to represent n bytes of garbage.

Solution: "A"*16

Midterm - Page 6 of 27

Q3.8 (5 points) Let OUTPUT be the output from the printf call on Line 5. You may slice this value (e.g.
OUTPUT[0:4] returns the the first word of buf). You may also perform arithmetic on this value
(e.g. OUTPUT[0:4] - 7)and assume it will be converted to/from the correct types automatically.

Also, let CANARY be the correct slice of OUTPUT from Q3.4.
Fill in each blank with an integer to provide an input to the gets call on Line 6.

Note that the + between terms refers to string concatenation (like in Project 1 syntax), but the
minus sign in the second line refers to subtracting from the OUTPUT [_: _] value.

"A'*___ 4+ CANARY + 'A'*__ +

(OUTPUT[: 1 -) + SHELLCODE

Solution: "A"*16 + CANARY + "A"*4 + (OUTPUT[20:24]-4) + SHELLCODE

The key difference is the need to find a relative address to bypass ASLR. We can do this by
using the SFP from the first printf, and modify it accordingly. The SFP of foo initially points to
SFP of main, which is at RIP of foo + 8. We want to reach RIP of foo + 4, so we subtract 4 from
this value.

Also possible (but not within the given skeleton) would be keeping OUTPUT[20:24] and adding
4 more garbage bytes at the end before putting SHELLCODE starting at SFP of main.

Midterm - Page 7 of 27

Q4 ASLR (mod 5) - Memory Safety
Consider the following vulnerable C code:

1/void exploit() {

2 char buf[16];

3 size_t k = 0;

4

5 char new_byte = fgetc(stdin);
6 fgets(buf, 21, stdin);

7

8 size_t buflen = strlen(buf);
9 int n = 5;

10 while (n*k <= buflen) {

11 buf[n*k] = new_byte;

12 k += 1;

13 }

14|}

15

16| void sh_fn() {/* Code not shown */}
17

18| int main() {

19 // Function pointer

20 void (*shellcode)() = &sh_fn;
21 exploit ();

22 return O0;

23]}

(20 points)

RIP of main

SFP of main

(1)

()

SFP of exploit

buf

3)

new_byte

buflen

n

Non-executable pages are enabled. All other memory safety defenses are disabled.

This is the result of running disas main in GDB:

110x080760A0: push %ebp
2|0x080760A4: mov %esp, %ebp
310x080760A8: sub $4, %esp

4] ...

5/0x080760C8: call exploit
6/0x080760CC: mov $0, %eax
7/0x080760D0: add $4, %esp
8/0x080760D4: mov %ebp, %esp
9/0x080760D8: pop %ebp
10/0x080760DC: ret

Q4.1 (1 point) Fill in the blanks for the stack diagram, assuming the program is paused at Line 5.

O (A)(1) shellcode (2) buf

@ (B) (1) shellcode (2) RIP of exploit
O (©)(1) shellcode (2) RIP of fgetc
O (D)(1) RIP of exploit 2k

Midterm - Page 8 of 27

(3) RIP of fgetc
3k

(3) SFP of fgetc
(3) RIP of fgetc

Q4.2 (2 points) What is the value of the RIP of exploit, assuming the program is paused on Line 5?

O (A) 0x080760A4 @ (C) 0x080760CC O (E) 0x080760D4
O (B) 0x080760C8 O (D) 0x080760D0 QO (F) 0x080760DC

Solution: The RIP of exploit points to the next instruction to execute once exploit returns,
which is the one right after call exploit.

In the next two subparts, provide an exploit that causes the program to execute sh_£n.

Q4.3 (3 points) Provide an input to the fgetc on Line 5.

O (A) 0x00 O (C) 0xA4 O (E) 0xDO O (G) 0xD8
O (B) 0xA0 O (D) 0xA8 QO (F) 0xD4 @ (H) 0xDC

Q4.4 (3 points) Provide an input to the fgets on Line 6.

If a part of the input can be any non-zero value, use "A"*n to represent n bytes of garbage.

Solution: A*20

The goal of this exploit is to execute a ret2ret attack, by overwriting the RIP of exploit to equal
&ret. This will then return into the shellcode function pointer stored right above the RIP of
exploit on the stack.

The first key insight is that &ret is given in the assembly dump with LSB 0xDC, and that
this &ret shares the first three MSB with the existing RIP value of 0x080760CC. Therefore,
overwriting the LSB of RIP with 0xDC is sufficient to change the overall pointer to &ret. This
can be accomplished by setting buf [20] = 0xDC, since the RIP is exactly 20 bytes away from
the start of buf.

However, the code as-is prevents us from writing anywhere n*k <= buflen, so we need to
set buflen to be 20 or greater. We can do this by using the fgets(buf, 21, stdin) on
Line 6 and writing 20 "A"s and 1 null terminator. It follows that strlen(buf) will return 20,
enough for the while loop to execute buf[20] = 0xDC as intended. (Note that the fgets will
initially overwrite the RIP LSB with a null terminator, but we overwrite this later on the while
loop).

Midterm - Page 9 of 27

Q4.5 (3 points) How many different values of the variable n (on Line 9) (including n = 5) would result
in the correct exploit, without modifications, executing sh_fn?

O M1 O ©s3 O ®)>5 O)7
O (B)2 O (D)4 ® (Bo O H)8

Solution: We need to have buf[20] = 0xDC, so any value of n such that n*k = 20 for some
positive integer k. Therefore the answers are simply the divisors of 20: 1,2, 4, 5,10, 20.

Q4.6 (2 points) Which memory safety defenses, when enabled alongside non-executable pages, would
cause the correct exploit (without modifications) to fail? Consider each choice independently.

Note: For the PACs option only, assume the system is 64-bit (the exploit remains unchanged).

B (A) Pointer authentication codes [(C) None of the above
Bl (B) Stack canaries

Solution: PACs will definitely break (regardless of issues involving larger pointer sizes)
because we’re expressly overwriting part of an existing pointer.

Stack canaries will also mess up the exploit by changing the size of the stack and distance from
buf to RIP, making it such that we can’t have high enough buflen to get buf[20] = 0xDC.

Midterm - Page 10 of 27

Q4.7 (3 points) Which modifications to the program itself would prevent the correct exploit, without
modifications, from executing sh_fn?

Consider each choice independently.

B (A) Changing Line 6 to fgets(buf, 17, stdin)
O (B) Changing Line 8 to int buflen = strlen(buf)
B (C) Changing Line 10 to while (n*k < buflen)
O (D) Changing Line 12to k += 2
[(E) None of the above

Solution: Changing Line 6 to fgets(buf, 17, stdin): This will prevent us from achieving
any buflen higher than 16, preventing our exploit which requires running buf[20] = 0xDC
(the while loop will terminate before then).

Changing Line 8 to int buflen = strlen(buf) will not affect us, because the buflen value
is positive and not large enough to overflow.

Changing Line 10 towhile (n*k < buflen) will prevent the exploit, because the maximum
buflen size we can achieve is 20 due to the null terminator added by the fgets. Therefore
when we reach n*k = 20, the while loop terminates instead of running buf[20] = 0xDC.

Changing Line 12 to k += 2 does not affect us with the given n=5, since k=4 will give n*k =
20 as needed.

Q4.8 (3 points) In this subpart only, assume ASLR is also enabled. What is the approximate probabil-
ity that the correct exploit, without modifications, executes sh_fn?

Clarification after exam: Assume ASLR randomizes the code section.

A) 0 1 1 D) 1
O @) ®® O ©5 ® D)

Solution: 1 was given credit because the question did not specify whether the code section
was randomized, even though this was the intended setup.

ASLR randomizing the code section is an issue for our exploit, since we don’t have a fixed byte
like 0xDC to overwrite the RIP LSB with. However, we know that a ret is always 16 bytes
ahead of the current value in RIP of exploit because ASLR maintains relative addressing.

Therefore, our best try is to overwrite with some value greater than 0x10 and hope that this

1
hits the ret. This (very roughly) can be expected to occur with probability 256 certainly

this is the best option as it isn’t impossible (probability 0) or the other two options which have
probability way higher than expected.

Midterm - Page 11 of 27

Q5 AES-COMBO - Symmetric Cryptography (16 points)
EvanBot designs the AES-COMBO mode of operation, defined below:

Cq = EK(IV1 D Pl)
Cy = EK(IVQ D P2) ® Cy
Ci=Eg(Ci20F)

Q5.1 (1 point) Select the correct decryption formula for ¢ > 3.

O (A) P, =Dg(C; ® Ci_2) O (©) P, = Dk (C;) ® Ci—
O B) P, =Ex(C;) & Ci—y ® D) P, =Dg(C) @ Ci—a

Midterm - Page 12 of 27

Q5.2 (3 points) Select all methods for generating /V; and I'V5 that result in AES-COMBO being IND-
CPA secure.

All choices are independent of each other.

B (A) IV; and I'V; are independently randomly generated.

O (B) Seed a PRNG with K, set IV; = Generate(128), and then set IV, = Generate(128)
using the same PRNG instance.

O (C) Seed two separate PRNGs with K, set IV; = Generate(128) from the first PRNG, and
then set IV, = Generate(128) from the second PRNG.

B (D) IV; is randomly generated and IVo = H(IV}).
B (E) IV; is randomly generated and IV} = H(IV3).
[(F) None of the above

Solution:

« IV] and I'V; are independently randomly generated:

This case essentially reduces to two chains of AES-CBC: one for odd blocks and one
for even blocks. The ©C} factor in C5 does not affect anything, as its an XOR with a
known value.

« Seed a PRNG with K, set I[V; = Generate(128), and then set [V, =
Generate(128) using the same PRNG instance.
The PRNG seeding with K makes it deterministic for the purposes of IND-CPA.

« Seed two separate PRNGs with K, set IV} = Generate(128) from the first
PRNG, and then set IV, = Generate(128) from the second PRNG.
The key here is that this results in IV} = I'V;. We then can break IND-CPA as given in
the latter half of this question in Q5.5/5.6.

« IV} is randomly generated and IV, = H(IV}):
Given that IV} is random, H (IV5) also appears pseudorandom and unpredictable for
the attacker. Therefore the scheme is essentially equivalent to Option A.

« IV} is randomly generated and IV, = H(IV}):

Given that IV5 is random, H (IV7) also appears pseudorandom and unpredictable for
the attacker. Therefore the scheme is essentially equivalent to Option A.

Midterm - Page 13 of 27

In the next two subparts, suppose a ciphertext C' gets modified in transit. Let P’ represent the plaintext
from decrypting C”. For each row, select the corresponding value. "Garbage" refers to a pseudorandom
string, e.g. an unknown value decrypted with a block cipher.

Q5.3 (3 points) C is modified such that C; = C; @ 1 (i.e. a bit flip in the first ciphertext block).

Pl: @ (A) Garbage oO®A®l ON(OFSNN O D)~

P; @ AWGabage O®ROL OOPRPR O DP
P/,i>5,ieven: QO (A) Garbage OBPFs1 O©P®P_ @ DPF
Pj,i>5,10dd: O (A) Garbage O®BFrel O©Orer. @MDPE

Solution: Recall the decryption formulas:

P, =Dg(Ch)® IV
Py =Dg(Cos Ch) @IV
Py = Dk (C;) & Ci—2

Plug in C] = C1 @ 1 (and everything else remains the same):

P = Dg(C)) @ IV/

P =Dg(Ci®1)® IV,
P| = garbage ® IV}

P| = garbage

(Remember "garbage" is just a pseudorandom-looking string, for instance decrypting an
unknown value with a block cipher as we did here)

Py =Dg(Cya C) @ 1V,
P,=Dg(CodC1d 1)@ IVs

Py =Dg(Ex(IVa® P) ® 1) @ IV,
Pj = garbage & V5

P} = garbage

Since ¢ > 5, the last two options are unaffected, as they only reference C'5 or later, and only
C] was modified.

P/ = Dk (Cj) @ Cj_,
P! = Dg(C;) @ Ci—2

Midterm - Page 14 of 27

Q5.4 (3 points) C is modified such that C, = Cy @ 1.

P: O (A) Garbage O®FPDI1 OCPoP

Pl: @ (A) Garbage OBARd1 O CPRhoP
P!,i>5ieven: Q (A)Garbage OBPFP®1 O ©P®P_
Pl,i>5,i0dd: QO (A) Garbage O®BPd1 O©P®P_

® D)~
O D)~
® D) F
® D)~

Solution: Plug in C, = Cy @ 1 (and everything else remains the same):

P = Dx(C) & IV
P = Dg(Cy) @ Iy
Pl =P

Py = D(Che) & IV

Py =Di(Cro1®Ch) @IV
Py=Dg(Ex(IVa® P2)® 1) D IV,
P} = garbage & IV,

P} = garbage

C] was modified.

P =Dk (C})® Cj_,
P/ = Dk (C;) @ Ci—o
P/ =P,

7

Since ¢ > 5, the last two options are unaffected, as they only reference C5 or later, and only

Midterm - Page 15 of 27

Assume for the following subparts only that IVy = IVa = IV for some randomly generated IV You
want to provide a strategy to win the IND-CPA game.

Adversary (you) Challenger

First, the adversary (that’s you!) sends two different

M and M’ challenge messages, M # M/, to the challenger. For your
strategy, you can assume M and M’ are each two blocks
long,.

Y

C = (C1,C») Then, the challenger randomly encrypts either M or M’.
< The resulting two-block ciphertext C' = (IV,Cy, Cy) is
returned to you.

Guess M or M’

Finally, you guess whether M or M’ was encrypted.

Y

NOTE: The diagram originally had a typo with C = (Cy, C1).

In this strategy, the query phase is not needed (i.e. you never have to ask the challenger to encrypt
messages of your choosing beforehand).

The second challenge message M’ = (7, ?) is two randomly-generated blocks.
Q5.5 (2 points) What must be true of M = (M;, M) for this strategy to work?
Note: 7 denotes a randomly-chosen value.
O A M =0and My =7 O (C)M;=7and My =7 OEM =M1
O B)M; =7and Mz =0 O (D) My # My @) M =DM,
Q5.6 (4 points) Assume that M satisfies the condition you gave for the previous subpart.

Let C' = (IV,C, C3) be the challenge ciphertext. Provide a strategy to guess whether M or M’
was picked, with non-negligibly higher than 50% probability.

Your answer should be formatted along the lines of "If C; @ 161 = 0, then guess M, else guess
M'" (no relation to actual solution).

Solution: If Cy = 0, output M, otherwise M.

Our strategy uses the fact that, when IV} = I'V;, we have C1 = Ex(IV @& M;) and Cy =
Ex(IV @ M) @ C1 (note we switched to M; instead of P, here due to IND-CPA convention,
but the formulas are equivalent) . When M; = My = X, we have C; = Ex(IV & X) and
Co=FEx(IVaX)oCi=Ex(IVaeX)® Exk(IV e X)=0.

Midterm - Page 16 of 27

Q6 A Song of MACs and Signatures - Cryptography (16 points)
EvanBot wants to review alternatives to HMACs and signatures. Below is a simplified version of the
EU-CMA (referred to as EU-CPA in lecture) security game, with only 1 query message M (which
will be sufficient for all subparts).

Adversary (you) Challenger
M .
> First, you send one query message M to the challenger.
MAC(K, M)
< Then, the challenger returns the MAC of M.

(M',T") N Finally, you output some M’ # M and a tag 7", and win the
~ game if 7" is a valid MAC for M’ with non-negligible probability.

In each subpart, select whether the given scheme is EU-CMA secure. If you selected "Insecure”, provide
an attack to win the EU-CMA game with non-negligible probability. If you selected "Secure”, leave the
boxes blank.

For all subparts: if a box can be an arbitrary value, you must put "anything" as the answer.

Midterm - Page 17 of 27

Q6.1 (4 points) MAC(K, M) = CBC(K,H(M)) = (1V,C)
CBCis AES-CBC encryption. IV is randomly generated per MAC. H has an output of 128 bits.

QO (A) Secure

Query Message:

@ (B) Insecure

Solution: anything

Let T' = (IV, C) be the tag received for the query message M. Now provide a pair (M’, T") such
that M’ # M and T” is a valid MAC for M’ with non-negligible probability.

Solution Message:

Solution: anything

Note: Recall that the tag in this scheme is a pair of the form (IV,C).

Solution Tag:

Midterm - Page 18 of 27

Solution: IV & H(M')® H(M),C).

When verifying the MAC (IV’, C") as given above, the user runs CBC
with IV as given in the tag (required to deterministically verify), such
that

CBC(K, H(M')) using IV' = Ex(IV' ® H(M"))
— Ex(IV® H(M')® H(M) ® H(M"))
— Ex(IV & H(M))
—c=C

therefore our (IV’, C") verifies correctly for a new arbitrary message
M.

Remember: if a box can be an arbitrary value, you must put "anything" as the answer.
Q6.2 (4 points) MAC(K, M) = CTR(K,H(M)) = (1V,C)
CTR is AES-CTR encryption. IV is randomly generated per MAC. H has an output of 128 bits.

QO (A) Secure @ (B) Insecure

Query Message: Solution: anything

Let T' = (IV, C) be the tag received for the query message M. Now provide a pair (M’, T") such
that M’ # M and T" is a valid MAC for M’ with non-negligible probability.

Solution Message: Solution: anything

Note: Recall that the tag in this scheme is a pair of the form (IV,C).

Solution: (IV,C & H(M) ® H(M"))
When verifying the MAC (IV’, C") as given above:

C'=Ex(IV)®HM')® HM)® H(M')

Solution Tag: =Ex(IV)® H(M')

therefore our (IV', C”) verifies correctly for a new arbitrary message
M.

Midterm - Page 19 of 27

For each of the following signature schemes, answer whether the scheme is EU-CMA secure.

The EU-CMA game for signature schemes is identical to the game for MACs, except the challenger
returns the signature of the query message under the secret key SK for their public key PK. Your
goal as the adversary is to output a valid message/signature pair (M’, S") for PK with M’ different
from the query message.

Q6.3 (4 points) Sign(SK, M) = M?% mod N
d = SK is an RSA private key associated with the public key (e, N).
M must satisfy 2 < M < N — 2.

QO (A) Secure @ (B) Insecure

Query Message: Solution: anything

Let S be the signature received for the query message M. Now provide a pair (M’, S”) such that
M’ # M and S’ is a valid signature for M’ with non-negligible probability.

Solution Message: Solution: M2

Solution: S?

This is one of many possible answers — you could also do existential
forgery e.g. S = anything and then M = S°. However it’s not
possible to have M = anything.

Solution Signature:

Midterm - Page 20 of 27

Q6.4 (4 points) Sign(SK, M) = H(M) + xM mod p
x = SK is the private key chosen uniformly at random mod p, with the public key PK = g*.
M must satisfy 2 < M < p— 2.
Verify(PK, (S1, S2)) returns true if g~ # M) . g% = (PK)M mod p.
Clarification after exam: Verify(PK, (S, S2)) should read Verify(PK, S).

O (A) Secure @ (B) Insecure

Query Message: Solution: anything

Let S be the signature received for the query message M. Now provide a pair (M’, S”) such that
M’ # M and S’ is a valid signature for M’ with non-negligible probability.

Solution Message: Solution: anything

Solution:
While it’s possible to break this scheme algebraically, it’s easiest is
to solve for x given the signature, then sign normally. Note that
S = H(M) 4 zM mod p, and that the adversary knows M by
construction, so they can find x = (S — H(M)) - M~! mod p.
Solution Signature: . , . , ,
Then we can use the sign formula: S” = Sign(z, M') = H(M')4+x =
H(M')+ (S—H(M))- M~ mod p — 1.

Alternative solution that doesn’t allow for arbitrary solution message:
Arbitrary query, solution message = 2M, solution signature: 2(S —
H(M)) + H(M").

Midterm - Page 21 of 27

This page intentionally left (mostly) blank.

The exam continues on the next page.

Midterm - Page 22 of 27

Q7 Be My Proxy? - Asymmetric Cryptography (18 points)
Consider the following variant of ElGamal encryption. For all of Q7, assume that H outputs 128 bits.

Key Generation:

1. Choose a random private key b mod p such that ged(b,p — 1) = 1.
2. Derive the public key as B = g” mod p.

Encryption: Decryption:
1. Choose a random r mod p such that ged(r,p — 1) = 1. 1. Compute K = H()
2. Compute R = ¢g" mod p. 2. Decrypt M = Dec(K, C3).

3. Let K = H(B" mod p) (i.e. the hash of B" mod p).

4. Send (C}, Cy) = (R, Enc(K, M)).

Q7.1 (1 point) What goes in the blank in the decryption protocol?
@ 1 Cll’ mod p O B) Cf mod p O (C) B¢ mod p O (D) B" mod p

Solution: C? = (¢")’ = ¢*" = B" mod p

Q7.2 (3 points) Select all true statements.

Bl (A) The variant scheme is IND-CPA secure.

O (B) The variant scheme is multiplicatively malleable (e.g. a ciphertext C' encrypting M can
be transformed into a ciphertext C’ encrypting 2M, without knowing b).

O (C) The variant scheme is additively malleable (e.g. a ciphertext C' encrypting M can be
transformed into a ciphertext C’ encrypting M + 1, without knowing b).

[(D) None of the above

Solution: This scheme is essentially ElGamal from lecture but instead of doing M - K mod p,
we use K for symmetric encryption.

This use of symmetric encryption prevents any form of malleability.

Midterm - Page 23 of 27

Q7.3 (2 points) Recall that the ElGamal scheme from lecture defines Cy = M - B"” mod p instead of
Enc(H(B" mod p), M).

Alice and Bob believe that this variant scheme will protect them against a man-in-the-middle
attack from Mallory, unlike lecture ElGamal. Assume that Alice and Bob do not know each other’s
public keys and must first share them over the insecure channel.

Is this correct?

O (A) Yes, because Mallory can’t predictably modify Cb.

QO (B) Yes, because M - B" mod p is not confidential (i.e. it leaks some information about M).
QO (C) No, because Enc only provides authenticity if the attacker doesn’t know the key.

@ (D) No, because Mallory can still cause Alice and Bob to derive keys known to Mallory.

Solution: Since Alice and Bob have to share their public keys first, Mallory can easily intercept
and replace these with keys known to her. Then she can MITM attack the scheme.

Q7.4 (3 points) The hardness of which cryptographic problems is necessary for the variant scheme to
be secure? Select all that apply.

B (A) Discrete logarithm problem O (C) RSA problem
B (B) Diffie-Hellman problem [(D) None of the above

Solution: An adversary who can break DLP can break the DHP.

Given the ability to break DHP, we can recover g*” mod p from C; = g" mod p and B =
¢® mod p, from which we can derive K.

The RSA problem is not applicable here.

Midterm - Page 24 of 27

Alice is about to leave on a month-long vacation, and wants the central mail server at her office to
redirect all her email to Bob’s inbox. However, since she uses encrypted email, Bob won’t be able to
read these messages as they were encrypted with Bajice (Alice’s public key).

They decide to use this ElGamal variant to develop a proxy re-encryption system. This system allows
transforming ciphertexts encrypted with Bajice to be encrypted with Bpep instead, while keeping the
underlying plaintext the same.

Q7.5

Midterm -

(6 points) Design a proxy re-encryption protocol using the modified ElGamal scheme. That
is, design an algorithm to transform C' = (C1,C2) = (¢" mod p, Enc(H (B}, mod p), M)
encrypting some message M into C' = (C7, C}) that decrypts to the same message M when
decrypted by Bob with bpep.

Clarification after exam: The original subpart had a typo, saying Cy = Enc(K, H (B, mod p))
instead of the correct Enc(H (B, mod p), M) as given in the protocol.

First, the mail server is given a specific value V' that will enable proxy re-encryption.

V.
@ (A) baice - by mod (p — 1) O (C) bpop - batice mod (p — 1)
O (B) bpop - byrji mod (p — 1) O (D) beeb + batice mod (p — 1)

Given C = (C1,C3) and V, give an expression for C' = (C1, C%):

of
O ®»a O (©) Cy-V modp
O (B)C1+Vmod (p—1) @® (D) ¢} mod p
Cl:
@ 1)y O () Cy -V mod p
O (B)C2+V mod (p—1) O (D) CY mod p

Solution: Note that the mail server has no hope of changing the value of K, since any change
to C'y will cause it to decrypt garbage and the server cannot learn the value of M directly.
Therefore we must cause Bob’s decryption process to derive the same K that was used to
create (.

However, Bob will derive K’ = (g")% which does not equal K = (g")"4ice. Accordingly we
need to change Cy such that (O])b = (g)Patce,

Let V = bajice - bgolb mod p such that O] = C} = (gr)bA“CC'bI;)i mod p. Thus when Bob derives
K' = (C})t®, we have

()% mod p
— ((gr)bAnce-bgot)bBob mod p

= (g7) mod p

Page 25 of 27

as required (note the exponent cancellation works out due to the requirement ged(b,p—1) = 1
in the protocol setup).

Q7.6 (3 points) Recall that the ElGamal scheme from lecture defines Cy = M - B” mod p instead of
Enc(H(B" mod p), M).

Is it still possible to create a proxy re-encryption scheme with lecture ElGamal?

@ (A) Yes, with an identical setup O (C)No
O (B) Yes, but with a modified setup

Solution: The proxy re-encryption only deals with keeping the value of K the same, so
changing how K is used to encrypt M is technically irrelevant. We can use the same setup as

before without any changes.

Midterm - Page 26 of 27

Post-Exam Activity
EvanBot is having a post-midterm party! What did they cook?

\SHLGEZAKL

Artwork by Shigezaki Interested in having your art featured? Email evanbot@berkeley.edu.

Comments / Assumptions Box

Congratulations for making it to the end of the exam! Feel free to leave any thoughts, comments, feedback,
or doodles here. These comments won’t affect your grade.

If there’s anything else you want us to know, or you feel like there was an ambiguity in the exam, please
put it in the box below. For ambiguities, you must qualify your answer and provide an answer for both
interpretations. For example, “if the question is asking about A, then my answer is X, but if the question is
asking about B, then my answer is Y”. You will only receive credit if it is a genuine ambiguity and both of
your answers are correct. We will only look at ambiguities if you request a regrade.

Midterm - Page 27 of 27

