
Nicholas & Peyrin
Summer 2021

CS 161
Computer Security Midterm

For questions with circular bubbles, you may select exactly one choice on Examtool.

Unselected option

Only one selected option

For questions with square checkboxes, you may select one or more choices on Examtool.

You can select

multiple squares

For questions with a large box, you need to write your answer in the text box on Examtool.

There is an appendix at the end of this exam, containing descriptions of all C functions used on this exam.

You have 110 minutes, plus a 10-minute bu�er for distractions or technical di�culties, for a total of 120
minutes. There are 10 questions of varying credit (150 points total).

The exam is open note. You can use an unlimited number of handwritten cheat sheets, but you must work
alone.

Clari�cations will be posted on Examtool.

Q1 MANDATORY – Honor Code (5 points)
Read the following honor code and type your name on Examtool.

I understand that I may not collaborate with anyone else on this exam, or cheat in any way. I am
aware of the Berkeley Campus Code of Student Conduct and acknowledge that academic misconduct
will be reported to the Center for Student Conduct and may further result in, at minimum, negative
points on the exam and a corresponding notch on Nick’s Stanley Fubar demolition tool.

Solution: Everyone gets 5 free points for making it through the �rst half of the semester.

Page 1 of 26

Grade distribution (out of 150 points):

Midterm Page 2 of 26 CS 161 – Summer 2021

Q2 True/false (28 points)
Each true/false is worth 2 points.

Q2.1 True or False: If the attacker can only overwrite a function’s SFP but not the RIP, the attacker
cannot cause shellcode to execute.

True False

Solution: False. Consider the o�-by-one vulnerability in Project 1, Question 4. The attack
only overwrites the function’s SFP, not the RIP.

Q2.2 True or False: ECB mode only leaks information if you encrypt two identical messages.

True False

Solution: False. If you encrypted two di�erent messages, ECB would leak the existence of
any identical blocks.

Q2.3 True or False: If a cryptographic hash is collision-resistant, a pair of two di�erent inputs that
hash to the same output does not exist.

True False

Solution: False. There are more inputs to a hash than outputs, so there will always be di�erent
inputs that hash to the same output. If the hash is collision-resistant, it is computationally
hard to �nd such a pair.

Q2.4 True or False: A common approach to communicating securely and quickly is �rst using
symmetric-key cryptography to send a key, then using public-key cryptography to send messages.

True False

Solution: False. First use public-key cryptography (slow) to send a key, then use symmetric-
key cryptography (fast) to send messages.

Q2.5 True or False: Enabling ASLR prevents all memory attacks on the stack.

True False

Solution: False. It is possible to subvert ASLR by using brute-force to guess the absolute
addresses on the stack or by �nding a vulnerability that leaks absolute addresses.

Q2.6 True or False: In x86 calling convention, the SFP is located at a higher address than the RIP.

Midterm Page 3 of 26 CS 161 – Summer 2021

True False

Solution: False. The RIP is pushed on the stack �rst, so it is located at a higher address than
the SFP.

Q2.7 True or False: Using El Gamal together with Di�e Hellman to encrypt messages provides both
con�dentiality and integrity.

True False

Solution: False. El Gamal is a public key encryption scheme, while Di�e Hellman is a key
exchange scheme. Neither scheme provides integrity.

Q2.8 Alice obtains a copy of a digital certi�cate for Bob from an untrustworthy source. She trusts the
certi�cate authority (CA) who signed Bob’s certi�cate.

True or False: It is safe for Alice to trust the certi�cate after she veri�es the signature.

True False

Solution: True. Where Alice obtained the certi�cate from does not matter because a trusted
CA has signed it, and Alice veri�es the signature. Even if the untrustworthy source tried to
tamper with the certi�cate, they would be unable to produce a valid signature without the
CA’s private key.

Q2.9 True or False: Stack canaries that include a �xed NULL byte are easier to brute-force than stack
canaries with 4, completely random bytes.

True False

Solution: True. Introducing a �xed NULL byte means that there are 8 fewer bits that need to
be guessed in order to leak the correct canary.

Q2.10 True or False: One problem with the Trusted Directory (TD) model discussed in lecture is that
users have no way of reliably determining the TD’s public key.

True False

Solution: False. It is assumed that the TD’s public key would be baked into mobile devices, cell
phones, etc. in order to establish the root of trust. This same model is used for root certi�cate
authorities, whose public keys must also be distributed as part of the device or its operating
system.

Q2.11 True or False: Certi�cate authorities solve the problem of scalability by allowing delegated
trust.

Midterm Page 4 of 26 CS 161 – Summer 2021

True False

Solution: True. Certi�cate authorities may sign a certi�cate stating that another entity with
a public key is trusted to sign certi�cates. These entities are known as intermediate certi�cate
authorities.

Q2.12 True or False: Storing the hash of the passwords prevents any attacker from learning passwords.

True False

Solution: False. Hashing the password forces the attacker to perform a brute-force attack to
learn passwords, but it is still possible for the attacker to learn passwords. For example, the
attacker can perform an o�ine dictionary attack.

Q2.13 True or False: Rollback resistance is a required property for a secure PRNG.

True False

Solution: False. Rollback resistance is a useful property but it is not a requirement. Recall
that a PRNG is secure if its output is computationally indistinguishable from random.

Q2.14 True or False: MACs are a symmetric-key protocol.

True False

Solution: True. Alice and Bob use the same secret key. There is no public-private key pair in
the MAC algorithm.

Midterm Page 5 of 26 CS 161 – Summer 2021

Q3 Security Principles (15 points)
For each scenario, select the most relevant security principle. Each option is used exactly once.

Q3.1 (3 points) To prevent memory safety vulnerabilities, a programmer enables ASLR, non-executable
pages, and stack canaries.

(A) Defense in depth

(B) Detect if you can’t prevent

(C) Separation of privilege

(D) Consider human factors

(E) Ensure complete mediation

(F)

Solution: The attacker must bypass multiple defenses to exploit the program. This is defense
in depth.

Q3.2 (3 points) A bank installs alarms to alert the security guards in case intruders break in.

(G) Defense in depth

(H) Detect if you can’t prevent

(I) Separation of privilege

(J) Consider human factors

(K) Ensure complete mediation

(L)

Solution: The alarms are present for detection in case the prevention methods against in-
truders fail. This is detecting if you can’t prevent.

Q3.3 (3 points) To access top-secret CS 161 data, Nicholas must enter a password that only he knows,
and Peyrin must enter a second password that only he knows.

(A) Defense in depth

(B) Detect if you can’t prevent

(C) Separation of privilege

(D) Consider human factors

(E) Ensure complete mediation

(F)

Solution: If only one person was malicious, they could not access the top-secret data by
themselves. Both people need to work together to access the data. This is separation of
privilege.

Q3.4 (3 points) When writing C code, a programmer decides to leave stack canaries disabled, because
they forgot the name of the compiler �ag for enabling canaries.

Midterm Page 6 of 26 CS 161 – Summer 2021

(G) Defense in depth

(H) Detect if you can’t prevent

(I) Separation of privilege

(J) Consider human factors

(K) Ensure complete mediation

(L)

Solution: Humans will often do whatever is easiest, even if it’s less secure. By making stack
canaries di�cult to implement and disabled by default, the designers are failing to consider
human factors.

Q3.5 (3 points) In an airport, every passenger must pass through the security checkpoint.

(A) Defense in depth

(B) Detect if you can’t prevent

(C) Separation of privilege

(D) Consider human factors

(E) Ensure complete mediation

(F)

Solution: The airport ensures that every passenger has been checked by the security check-
point. This is ensuring complete mediation.

Midterm Page 7 of 26 CS 161 – Summer 2021

Q4 Block Ciphers (15 points)
Consider the following block cipher mode of operation.

Mi is the ith plaintext block. Ci is the ith ciphertext block. EK is AES encryption with key K .

C0 = M0 = IV

Ci = EK(Mi−1 ⊕Mi)

Q4.1 (5 points) Which of the following is true about this scheme? Select all that apply.

(A) The encryption algorithm is parallelizable

(B) If one byte of a plaintext block Mi is changed, then the corresponding ciphertext block Ci

will be di�erent in exactly one byte

(C) If one byte of a plaintext block Mi is changed, then the next ciphertext block Ci+1 will be
di�erent in exactly one byte

(D) If two plaintext blocks are identical, then the corresponding ciphertext blocks are also
identical

(E) The encryption algorithm requires padding the plaintext

(F) None of the above

Solution:

(A) True. By looking at the equation or the diagram, we can see that ciphertext block Ci does
not depend on any previous ciphertext block (it only depends on plaintext blocks Mi−1 and
Mi).

(B) False. Since the plaintext block is passed through a block cipher, changing one byte of block
cipher input will cause the block cipher output to be completely di�erent.

Midterm Page 8 of 26 CS 161 – Summer 2021

(C) False. Changing one byte of Mi will change one byte of Mi ⊕Mi+1, the input to the block
cipher. Again, changing one byte of block cipher input will cause the block cipher output to be
completely di�erent.

(D) False. Since the plaintext block is XOR’d with the previous block of plaintext before being
passed into a block cipher, the corresponding ciphertext blocks are not necessarily identical.

(E) True. The plaintext is passed as an input to the block cipher, so it must be padded to a
multiple of the block size.

Q4.2 (4 points) True or False: If the IV is always a block of all 0s for every encryption, this scheme
is IND-CPA secure. Brie�y justify your answer.

(G) True (H) False (I) (J) (K) (L)

Solution: False. There is no randomness, so the scheme must be deterministic, and determin-
istic schemes cannot be IND-CPA secure.

Q4.3 (6 points) True or False: If the IV is randomly generated for every encryption, this scheme is
IND-CPA secure. Brie�y justify your answer.

(A) True (B) False (C) (D) (E) (F)

Solution: False. Intuitively, note that the randomness in the IV is not passed to subsequent
blocks. The second block uses the second plaintext block M2 and the previous plaintext block
M1 as block cipher input, but never uses the IV. This is the case for all subsequent blocks as
well.

As a result, this scheme still leaks the existence of identical blocks. Formally, here are some
ways Eve could win the IND-CPA game:

• Sending M0 = X‖X‖X and M1 = X‖Y ‖Z results in the last two blocks of C0 being
identical

• Sending M0 = 0‖X and M1 = Y ‖X results in distinguishable ciphertexts

• Sending the same message twice results in everything but the �rst block of the ciphertext
being identical

Midterm Page 9 of 26 CS 161 – Summer 2021

Q5 Certi�cates (10 points)
You are working as a software engineer for an online discussion forum called Piazzzzza, which uses the
following certi�cate hierarchy:

1. Everyone has access to the public key of a trusted root certi�cate authority (CA)

2. The root CA uses its private key to sign a certi�cate C for Piazzzzza’s public key

3. Piazzzzza uses its private key to sign a certi�cate for each user’s public key

Q5.1 (2 points) True or False: An attacker who steals the private key of the root CA can forge C .

(A) True (B) False (C) (D) (E) (F)

Solution: True. The attacker can use the private key of the root CA to sign a fake certi�cate
C .

Q5.2 (2 points) True or False: An attacker who steals the private key of Piazzzzza can forge C .

(G) True (H) False (I) (J) (K) (L)

Solution: False. C is signed by the root CA’s private key. The attacker cannot use Piazzzzza’s
private key to sign C .

Q5.3 (2 points) True or False: An attacker who steals the private key of a user can forge C .

(A) True (B) False (C) (D) (E) (F)

Solution: False. As in the previous part, C is signed by the root CA’s private key. The attacker
cannot use the user’s private key to sign C .

Q5.4 (4 points) Suppose you are talking with someone claiming to be Jinan. Assume you have Jinan’s
public key.

Which of the following pieces of information on its own can prove that you are really talking with
Jinan? Select all that apply.

(G) The root certi�cate

(H) Jinan’s certi�cate

(I) A message “You are talking to Jinan” signed by Jinan’s private key

(J) A message “You are talking to Jinan” signed by the root CA’s private key

(K) None of the above

Midterm Page 10 of 26 CS 161 – Summer 2021

(L)

Solution: Certi�cates can be distributed by anybody, so a certi�cate on its own does not
prove that you are talking with Jinan.

Similarly, messages signed by Jinan can be distributed by anybody, so these messages on their
own do not prove that you are talking with Jinan.

Midterm Page 11 of 26 CS 161 – Summer 2021

Q6 Password Storage (12 points)
Consider a website that needs to securely store the �lename-password pairs in a database.

Notation:

• pwd is the password that we are storing in the database.

• salt is a randomly generated 256-bit string that is di�erent for each password in the database.

• Hash is a secure cryptographic hash function. Hash is not vulnerable to length extension attacks.
The attacker knows the hash function being used.

Assumptions:

• Every password is exactly 10 characters.

• The attacker has a precomputed table of the hash of every possible password.

• The attacker will not compute any hashes unless otherwise stated.

• The attacker can read all the records in the database.

For each password storage scheme, select all true statements.

Clari�cation during exam: For schemes involving a salt, assume each salt is randomly generated per
user and stored in a row with the username and hashed password.

Clari�cation during exam: Assume that the attacker may compute as many XOR operations as they
want.

Q6.1 (3 points) Hash(pwd‖salt) and salt

(A) The attacker can learn every user’s password

(B) The attacker can verify that a given password for a particular user is correct by computing
at most one hash

(C) The attacker can determine if two users have the same password without using the precom-
puted table

(D) None of the above

(E)

(F)

Solution: (A) False. The hash includes a random, 256-bit value, and the attacker has not
pre-computed the hashes for all possible passwords and salts.

(B) True. The attacker can use the password and the salt to compute the hash and compare the
hash output with the record in the database.

(C) False. Two users with the same password will have di�erent salts, so the records in the
database will look di�erent.

Midterm Page 12 of 26 CS 161 – Summer 2021

Q6.2 (3 points) (Hash(pwd)⊕ salt) and salt

(G) The attacker can learn every user’s password

(H) The attacker can verify that a given password for a particular user is correct by computing
at most one hash

(I) The attacker can determine if two users have the same password without using the precom-
puted table

(J) None of the above

(K)

(L)

Solution: The attacker can compute (Hash(pwd)⊕ salt)⊕ salt = Hash(pwd), which e�ec-
tively “cancels out” the salt and lets the attacker learn the unsalted password hashes.

(G) True. Since the attacker has learned the unsalted hashes, they can compare the password
hashes against their pre-computed list and learn every user’s password.

(H) True. The attacker can hash the given password and compare the hash output with the
record in the database.

(I) True. Since passwords are not salted, two users with the same password will have the same
hashed record in the database.

Q6.3 (3 points) Hash(pwd)

(A) The attacker can learn every user’s password

(B) The attacker can verify that a given password for a particular user is correct by computing
at most one hash

(C) The attacker can determine if two users have the same password without using the precom-
puted table

(D) None of the above

(E)

(F)

Solution: The reasoning is similar to the above part, since the passwords are unsalted.

(A) True. The attacker can compare the unsalted password hashes against their pre-computed
list and learn every user’s password.

Midterm Page 13 of 26 CS 161 – Summer 2021

(B) True. The attacker can hash the given password and compare the hash output with the
record in the database.

(C) True. Since passwords are not salted, two users with the same password will have the same
hashed record in the database.

Q6.4 (3 points) Suppose that Piazzzzza limits users to only be able to try inputting a password three
times per minute. Which of the following attacks does this defend against?

(G) Online brute-force attacks

(H) O�ine brute-force attacks

(I) Eavesdropping

(J) Format string vulnerability

(K)

(L)

Solution: Online brute-force attacks. In an online attack, the attacker repeatedly tries to
log into the service with di�erent passwords, forcing the service to compute the hashes for
the attacker. Limiting the rate of input makes it almost impossible for attackers to guess all
possible combinations of passwords.

O�ine brute-force attacks do not require interaction with the Piazzzzza service, so rate limits
will not stop these attacks.

Eavesdropping and format string vulnerabilities are unrelated to password hashing attacks.

Midterm Page 14 of 26 CS 161 – Summer 2021

Q7 Encryption and Authentication (15 points)
Alice wants to send messages to Bob, but Mallory (a man-in-the-middle attacker) will read and tamper
with data sent over the insecure channel.

• Alice and Bob share two secret keys K1 and K2

• K1 and K2 have not been leaked (Alice and Bob are the only people who know the keys)

• Enc is an IND-CPA secure encryption scheme

• MAC is a secure (unforgeable) MAC scheme

For each cryptographic scheme, select all true statements.

Clari�cation during exam: For the answer choice “Bob can always recover the message M ,” assume that
Mallory has not tampered with the message.

Clari�cation during exam: The answer choice “Bob can guarantee that M has not been changed by
Mallory,” this should say ”Bob can guarantee thatM has not been changed by Mallory without detection.“

Q7.1 (4 points) Enc(K1,M),MAC(K2,M)

(A) Bob can guarantee M is from Alice

(B) Bob can guarantee that M has not been changed by Mallory

(C) Mallory cannot read M

(D) Bob can always recover the message M

(E) None of the above

(F)

Solution: Bob can guarantee the message is from Alice and has not been tampered with
because MACs provide authenticity and integrity.

However, MACs do not provide con�dentiality, so Bob cannot guarantee that Mallory cannot
read the message.

Q7.2 (4 points) Enc(K1,M),MAC(K2,Enc(K1,M))

(G) Bob can guarantee M is from Alice

(H) Bob can guarantee that M has not been changed by Mallory

(I) Mallory cannot read M

(J) Bob can always recover the message M

(K) None of the above

(L)

Midterm Page 15 of 26 CS 161 – Summer 2021

Solution: This is the encrypt-then-MAC approach from lecture, which guarantees con�den-
tiality, integrity, and authenticity. This means Bob can guarantee M is from Alice, that M has
not been tampered with, and that Mallory cannot read M .

Q7.3 (4 points) Hash(M),MAC(K1,M)

(A) Bob can guarantee M is from Alice

(B) Bob can guarantee that M has not been changed by Mallory

(C) Mallory cannot read M

(D) Bob can always recover the message M

(E) None of the above

(F)

Solution: Bob cannot guarantee M is from Alice because he does not have the original
message M to verify the MAC. Similarly, without M , Bob cannot guarantee that the message
has not been tampered with. Since MACs do not provide con�dentiality, Bob cannot guarantee
that Mallory cannot read the message. Since the message is not encrypted, and hashes and
MACs are not designed to be reversed, Bob cannot recover the message.

Q7.4 (3 points) To simplify their schemes, Alice and Bob decide to set K1 = K2. (In other words, K1

and K2 are the same key.) Does this a�ect the security of their cryptographic schemes?

(G) Yes, because they should always use a di�erent key for every algorithm

(H) Yes, because they should always use a di�erent key for every message

(I) No, because the encryption and MAC schemes are secure.

(J) No, because the keys cannot be brute-forced.

(K)

(L)

Solution: As described in lecture, key reuse (reusing the same key for di�erent algorithms)
can a�ect the security of cryptographic schemes, because the algorithms may interfere with
each other.

Midterm Page 16 of 26 CS 161 – Summer 2021

Q8 PRNGs and Di�e-Hellman Key Exchange (15 points)
Eve is an eavesdropper listening to an insecure channel between Alice and Bob.

1. Alice and Bob each seed a PRNG with di�erent random inputs.

2. Alice and Bob each use their PRNG to generate some pseudorandom output.

3. Eve learns both Alice’s and Bob’s pseudorandom outputs from step 2.

4. Alice, without reseeding, uses her PRNG from the previous steps to generate a, and Bob, without
reseeding, uses his PRNG from the previous steps to generate b.

5. Alice and Bob perform a Di�e-Hellman key exchange using their generated secrets (a and b).
Recall that, in Di�e-Hellman, neither a nor b are directly sent over the channel.

For each choice of PRNG constructions, select the minimum number of PRNGs Eve needs to compromise
(learn the internal state of) in order to learn the Di�e-Hellman shared secret gab mod p. Assume that
Eve always learns the internal state of a PRNG between steps 3 and 4.

Q8.1 (3 points) Alice and Bob both use a PRNG that outputs the same number each time.

(A) Neither PRNG

(B) One PRNG

(C) Both PRNGs

(D) Eve can’t learn the secret

(E)

(F)

Solution: Eve observes the PRNG outputs. Since both PRNGs output the same number each
time, Eve also learns the values of a and b. She can use this to compute the shared secret
gab mod p without compromising any PRNGs.

Q8.2 (3 points) Alice uses a secure, rollback-resistant PRNG. Bob uses a PRNG that outputs the same
number each time.

(G) Neither PRNG

(H) One PRNG

(I) Both PRNGs

(J) Eve can’t learn the secret

(K)

(L)

Solution: Eve observes Bob’s PRNG output and learns the value of b. Alice will send ga mod p
in his half of the exchange. Eve can compute (ga)b mod p to learn the shared secret without
compromising any PRNGs.

Q8.3 (3 points) Alice and Bob both use a secure, rollback-resistant PRNG.

(A) Neither PRNG

(B) One PRNG

(C) Both PRNGs

(D) Eve can’t learn the secret

(E)

(F)

Midterm Page 17 of 26 CS 161 – Summer 2021

Solution: Eve only needs to compromise one PRNG to learn one of the secrets. For example,
if Eve compromises Alice’s PRNG, she learns a and can compute (gb)a mod p to learn the
shared secret (because Bob sends gb mod p in his half of the exchange). Alternatively, if Eve
compromises Bob’s PRNG, she learns b and can compute (ga)b mod p to learn the shared
secret (because Alice sends ga mod p in her half of the exchange).

For the rest of the question, consider a di�erent sequence of steps:

1. Alice and Bob each seed a PRNG with di�erent random inputs.

2. Alice uses her PRNG from the previous step to generate a, and Bob uses his PRNG from the
previous step to generate b.

3. Alice and Bob perform a Di�e-Hellman key exchange using their generated secrets (a and b).

4. Alice and Bob, without reseeding, each use their PRNG to generate some pseudorandom output.

5. Eve learns both Alice’s and Bob’s pseudorandom outputs from step 2.

As before, assume that Eve always learns the internal state of a PRNG between steps 3 and 4.

Q8.4 (3 points) Alice and Bob both use a secure, but not rollback-resistant PRNG.

(G) Neither PRNG

(H) One PRNG

(I) Both PRNGs

(J) Eve can’t learn the secret

(K)

(L)

Solution: Because there is no rollback resistance, if Eve compromises one PRNG, Eve can
deduce previous PRNG output and learn a secret (either a or b), which is enough to compute
the shared secret (as in the previous part).

Q8.5 (3 points) Alice and Bob both use a secure, rollback-resistant PRNG.

(A) Neither PRNG

(B) One PRNG

(C) Both PRNGs

(D) Eve can’t learn the secret

(E)

(F)

Solution: Even if Eve compromises both PRNGs, because they are rollback-resistant, Eve
cannot deduce the secrets a and b (i.e. previous PRNG output).

Midterm Page 18 of 26 CS 161 – Summer 2021

Q9 Memory Safety Mitigations (12 points)
Suppose we are on a 64-bit system, and we have an address space of 250 bytes.

Q9.1 (3 points) How many unused bits are available for pointer authentication in each address?

(A) None (B) 4 (C) 11 (D) 14 (E) 17 (F) 32

Solution: Addresses are 64 bits, and we need 50 bits to address the entire address space, so
there are 64− 50 = 14 unused bits available for pointer authentication.

Q9.2 (3 points) Regardless of your answer to the previous part, for the rest of the question, assume that
10 bits are used for pointer authentication in each address.

Additionally, for the rest of the question, assume that 64-bit stack canaries are enabled. The �rst
byte of the stack canary is always a null byte.

Assume the attacker does not have the ability to create their own pointer authentication codes
(PACs). How many bits does the attacker have to guess correctly to guess the stack canary and the
PAC?

(G) 0 (H) 10 (I) 56 (J) 64 (K) 66 (L) 74

Solution: The stack canary has 56 bits to be brute-forced (the canary is 64 bits long, but there
is a constant null byte, which is 8 bits). The attacker must also guess the 10 bits in the PAC. In
total, there are 10 + 56 = 66 bits that must be guessed correctly.

Q9.3 (3 points) Now assume that the attacker has a format string vulnerability that lets them read any
part of memory while the program is running.

Assume the attacker does not have the ability to create their own PACs. How many bits does the
attacker have to guess correctly to guess the stack canary and the PAC?

(A) 0 (B) 10 (C) 56 (D) 64 (E) 66 (F) 74

Solution: Since the attacker can read memory, they can read the stack canary value, so they
don’t need to guess the stack canary. However, they still need to guess the 10-bit PAC. (Recall
that the secrets used for generating PACs are stored in the CPU and are not accessible to the
program memory.)

Q9.4 (3 points) Assume the attacker is interacting with a remote system. Provide one defense that
would make brute-force attacks infeasible for the attacker. (Please answer in 10 words or fewer.)

Midterm Page 19 of 26 CS 161 – Summer 2021

Solution: Possible answers: Timeouts. Rate-limiting. Attacker is blocked from making too
many guesses.

Other answers are possible too.

Midterm Page 20 of 26 CS 161 – Summer 2021

Q10 Memory Safety Vulnerabilities (23 points)
Note: This is the hardest question on the exam. We recommend trying the other questions on the exam
before this one.

Consider the following vulnerable C code:

1 # include < s t d i o . h>
2 # include < s t r i n g . h>
3
4 s t ruc t p a c k e t {
5 char pay load [3 0 0] ;
6 char fo rmat [3 0 0] ;
7 } ;
8
9 void dep loy (s t ruc t p a c k e t ∗ p t r) {

10 p r i n t f (p t r −> format , p t r −> pay load) ;
11 }
12
13 in t main (void) {
14 s t ruc t p a c k e t p ;
15 do {
16 s t r c p y (p . format , "%s \ n ") ;
17 g e t s (p . pay load) ;
18 dep loy (&p) ;
19 } while (s t rcmp (p . payload , "END") != 0) ;
20 / / Assume l o o p a lways e x i t s f o r s u b p a r t 3 .
21 return 0 ;
22 }

Assume you are on a little-endian 32-bit x86 system. Assume that there is no compiler padding or
additional saved registers in all subparts. For the �rst 3 subparts, assume that no memory safety
defenses are enabled.

Fill in the following stack diagram, assuming that execution has entered the call to printf:

RIP of main
SFP of main

(1a)
(1b)
(1c)
(2a)
(2b)
(2c)
(2d)

RIP of printf
SFP of printf

Q10.1 (3 points) For (1a), (1b), and (1c):

(A) (1a) - p.format; (1b) - p.payload; (1c) - ptr

Midterm Page 21 of 26 CS 161 – Summer 2021

(B) (1a) - p.payload; (1b) - p.format; (1c) - ptr

(C) (1a) - ptr; (1b) - p.payload; (1c) - p.format

(D) (1a) - ptr; (1b) - p.format; (1c) - p.payload

(E)

(F)

Q10.2 (3 points) For (2a), (2b), (2c), and (2d):

(G) (2a) - RIP of deploy; (2b) - SFP of deploy; (2c) - &ptr->format; (2d) - &ptr->payload

(H) (2a) - SFP of deploy; (2b) - RIP of deploy; (2c) - &ptr->format; (2d) - &ptr->payload

(I) (2a) - &ptr->payload; (2b) - &ptr->format; (2c) - RIP of deploy; (2d) - SFP of deploy

(J) (2a) - &ptr->payload; (2b) - &ptr->format; (2c) - SFP of deploy; (2d) - RIP of deploy

(K) (2a) - RIP of deploy; (2b) - SFP of deploy; (2c) - &ptr->payload; (2d) - &ptr->format

(L)

Solution:

The local variable in the main stack frame is struct packet p. Within a struct, the �rst
variable is stored at the lowest memory address, so p.payload is at a lower address than
p.format.

Before the execution enters printf, the main function �rst calls the deploy function. When
calling a function, the argument is pushed on the stack �rst. For the deploy function, the
argument is ptr.

Next, the program pushes the RIP of deploy and the SFP of deploy. Recall that the RIP is at
a higher address on the stack than the SFP.

Finally, the deploy function calls the printf function. Recall that the arguments are pushed
on the stack in backwards order, so &ptr->payload is pushed �rst, then &ptr->format is
pushed next. This means that &ptr->payload is at a higher address than &ptr->format.

Here is the stack diagram �lled in:

Midterm Page 22 of 26 CS 161 – Summer 2021

RIP of main
SFP of main
p.format

p.payload

ptr

RIP of deploy
SFP of deploy
&ptr->payload

&ptr->format

RIP of printf
SFP of printf

Q10.3 (3 points) For this subpart only, assume that you may only execute one iteration of the while
loop and that the call to printf will not segfault. For this subpart, assume that no memory safety
defenses are enabled.

If the address of p is 0x7ff3ec10, construct an input at line 18 that would cause the program
to execute malicious shellcode. You may reference SHELLCODE as a 30-byte malicious shellcode.
Write your answer in Python 2 syntax (just like in Project 1).

Clari�cation during exam: Instead of ”Line 18,“ the question should say ”Line 17.“

Solution: The gets function allows us to over�ow the p.payload bu�er on the stack. We
have 600 bytes between the start of the bu�er and the shellcode, so we can place our 30-byte
shellcode at the beginning, followed by 570 dummy bytes, followed by the address of our
shellcode, which is the address of p:

SHELLCODE + 'A' * 574 + '\x10\xec\xf3\x7f'

For the remaining subparts, assume that stack canaries are enabled. Note that this changes the stack
diagram!

Q10.4 (5 points) For your exploit, construct a one-line Python helper function write_byte(addr, byte)
that returns an input for line 17 of the vulnerable C code. This input should ensure that byte is
written to the address at addr. This function may change bytes above addr (but not below), as
long as the correct byte is written at addr itself. The returned input only needs to work for
values of byte greater than 8.

Assume that addr is given as a 4-byte Python string containing the bytes of the address in little-
endian, and assume that byte is given as a Python integer between 9 and 255. For example,
write_byte('\xef\xbe\xad\xde', 128) would be a valid call to this function. Write your
answer in Python 2 syntax (just like in Project 1).

1 def w r i t e _ b y t e (addr , b y t e) :
2 return # Your answer h e r e

Midterm Page 23 of 26 CS 161 – Summer 2021

Hint: You may �nd the %c format speci�er useful: Read 4 bytes o� the stack and print as a single
character.

Solution: We take advantage of the %n speci�er, which writes the number of bytes printed so
far to the next pointer on the stack. This gives us the ability to write a value to any aribtrary
place in memory, as long as we know that printf will look for the pointer in a piece of
memory that we control.

We start by reasoning about the format speci�er in p.format, which is 300 bytes after the
start of p.payload. To do this, we �rst need to add 5 %c sequences to force printf to read
5 arguments o� the stack, which would read the values of &ptr->payload, a stack canary,
RIP of deploy, SFP of deploy, and ptr, causing it to print 5 characters. Now, we know that
the �rst 5 bytes of payload will be read as the next argument, so we remember to place our
address there. To trick printf to write our desired byte, we need to print an additional byte
- 5 bytes, since we already printed 5 bytes to set up our bu�er as the next argument. The
format speci�er ends with a %n to execute the write.

Now we reason about the payload in p.payload. The format speci�er needs to be placed 300
bytes after the start of p.buffer, and the �rst 4 bytes of p.payload will be our address, so
we need 296 dummy bytes to �ll p.payload. and our �nal helper is as follows:

addr + 'A' * 296 + '%c' * 5 + 'B' * (byte - 5) + '%n'

Q10.5 (5 points) If the address of p is 0x7ff3ec10 and the address of the RIP of main is 0x7ff3ee68,
construct a series of inputs for repeated calls at line 18 that would cause the program to execute mali-
cious shellcode. Assume that write_byte is implemented correctly, and you may call write_byte
for as many inputs as you would like. Write your answer as a series of print statements, all in
Python 2 syntax (just like in Project 1).

Hint: You may write hex literals to represent integers in Python, such as 0x36.

Clari�cation during exam: Instead of ”Line 18,“ the question should say ”Line 17.“

Solution: We use our write_byte helper to overwrite the RIP with the address of our
shellcode, one byte at a time. We know that write_byte will potentially modify bytes above
the destination byte but not below, so we start with the LSB and write upwards. Afterwards,
we place our shellcode in p.payload and then print END to exit the loop. Notice that END will
need to be at the beginning of the bu�er, so we actually need to place the shellcode 4 bytes
after beginning of p.payload so that it doesn’t get overwritten (3 characters plus 1 NULL).

print(write_byte('\x68\xee\xf3\x7f', 0x14))
print(write_byte('\x69\xee\xf3\x7f', 0xec))
print(write_byte('\x6a\xee\xf3\x7f', 0xf3))
print(write_byte('\x6b\xee\xf3\x7f', 0x7f))
print('A' * 4 + SHELLCODE)
print('END')

Midterm Page 24 of 26 CS 161 – Summer 2021

Q10.6 (4 points) Which of the following changes, if made on their own, would prevent the attacker from
executing malicious shellcode (not necessarily using your exploit above)?

(G) Enabling non-executable pages in addition to stack canaries

(H) Enabling ASLR in addition to stack canaries

(I) Rewriting the code in a memory-safe language

(J) Using fgets(p.payload, 300, stdin) instead of gets(p.payload) on line 17

(K) None of the above

(L)

Solution: Because stack canaries can be bypassed, it would be fairly easy to bypass non-
executable pages and execute a return-to-libc or ROP chaining attack using the write_byte
helper.

ASLR can be bypassed because the format string vulnerability allows the address of the stack
to be leaked, such as by leaking the value of the SFP using %x or %p.

Rewriting the code in a memory-safe language prevents all memory safety attacks, since the
language is memory-safe.

Rewriting the code to use the safe function fgets removes the last memory safety vulnerability
in this code, making it memory-safe.

Midterm Page 25 of 26 CS 161 – Summer 2021

C Function Definitions
int printf(const char *format, ...);

printf() produces output according to the format string format.

char *strcpy(char *dest, const char *src);

The strcpy() function copies the string pointed to by src, including
the terminating null byte ('\0'), to the buffer pointed to by dest.
The strings may not overlap, and the destination string dest must be
large enough to receive the copy.

char *gets(char *s);

gets() reads a line from stdin into the buffer pointed to by s until
either a terminating newline or EOF, which it replaces with a null byte
('\0').

int strcmp(const char *s1, const char *s2);

The strcmp() function compares the two strings s1 and s2. It returns
an integer less than, equal to, or greater than zero if s1 is found,
respectively, to be less than, to match, or be greater than s2.

char *fgets(char *s, int size, FILE *stream);

fgets() reads in at most one less than size characters from stream and
stores them into the buffer pointed to by s. Reading stops after an
EOF or a newline. If a newline is read, it is stored into the buffer.
A terminating null byte ('\0') is stored after the last character in
the buffer.

Midterm Page 26 of 26 CS 161 – Summer 2021

