
Madison & Ana
Summer 2023

CS 161
Computer Security Midterm

Print your name: ,
(last) (first)

Print your student ID:

You have 120 minutes. There are 7 questions of varying credit (150 points total).

Question: 1 2 3 4 5 6 7 Total
Points: 3 30 23 24 20 24 26 150

For questions with circular bubbles, you may select only one choice.
Unselected option (completely unfilled)

Only one selected option (completely filled)

For questions with square checkboxes, you may select one or more choices.
You can select

multiple squares (completely filled)

Pre-exam activity (for fun, not graded):
Word search! Circle your favorite mascot(s).

Q E N 2 A M
5 E V E L A
C O D A O L
B E E P N L
O C E I Z O
S I R N O R
K L T T V Y
I A B O B 6

Q1 Honor Code (3 points)

Read the following honor code and sign
your name.

I understand that I may not collaborate
with anyone else on this exam, or cheat
in any way. I am aware of the Berkeley
Campus Code of Student Conduct and ac-
knowledge that academic misconduct will
be reported to the Center for Student Con-
duct and may further result in, at mini-
mum, negative points on the exam.

Sign your name:

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 27

Q2 True/False (30 points)
Each true/false is worth 2 points.

Q2.1 True or False: Time of check to time of use (TOCTTOU) vulnerabilities violate the security
principle "ensure complete mediation".

(A) True (B) False

Solution: True, since TOCTTOU relies on the fact that the condition is only enforced once
and not checked again.

Q2.2 True or False: In the real world (outside of this class), stack canaries usually have a null byte.

(A) True (B) False

Solution: True

Q2.3 True or False: It is often worth disabling stack canaries in order to save compiler overhead.

(A) True (B) False

Solution: False, stack canaries add extremely little overhead.

Q2.4 True or False: In practice, PACs are a useful defense on an x86 little-endian 16-bit system.

(A) True (B) False

Solution: False, 16 bit addresses are very easy to forge PACs for.

Q2.5 True or False: Faster hash algorithms are strictly better than slow hash algorithms.

(A) True (B) False

Solution: False, both have their use cases (fast hashing for a bunch of different use cases,
slow hashing for passwords in particular).

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 27 CS 161 – Summer 2023

Q2.6 True or False: Using the same key to both encrypt and sign a message is good practice because
you need to remember fewer keys.

(A) True (B) False

Solution: False, we always want to avoid key reuse.

Q2.7 True or False: A passive eavesdropper is able to compromise the security properties of Diffie-
Hellman.

(A) True (B) False

Solution: False, Diffie-Hellman is resistant to passive eavesdroppers.

Q2.8 True or False: El Gamal encryption is a malleable scheme.

(A) True (B) False

Solution: True, multiplying s by k in an ElGamal ciphertext (r, s) makes the encrypted
message go fromm to km.

Q2.9 Consider the following scheme: A messageM is encrypted with AES-CBC (with a random IV).
The ciphertext is then tagged with a MAC scheme that fails EU-CPA security. Then, both the
ciphertext and the tag are outputted.

True or False: This scheme preserves the confidentiality ofM .

(A) True (B) False

Solution: True, since leaking information on the ciphertext does not leak information on the
plaintext (if the ciphertext is IND-CPA). This scheme doesn’t have integrity since the MAC is
not EU-CPA, however.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 27 CS 161 – Summer 2023

Q2.10 True or False: IND-CPA secure schemes must be non-deterministic.

(A) True (B) False

Solution: True, or else we can win the IND-CPA game with probability 1.

Q2.11 True or False: Once a certificate is issued, it is impossible to revoke it.

(A) True (B) False

Solution: False, there are various methods of revocation (revocation lists combined with time
limits, etc).

Q2.12 True or False: Certificate implementations using a trusted directory are scalable.

(A) True (B) False

Solution: False, see lecture slides.

Q2.13 True or False: Storing passwords as Enc(K, pwd) with secret key K is more secure than hashing
them as H(pwd)

Clarification during exam: Instead of H(pwd), passwords are stored as H(pwd∥salt) where salt is
a randomly chosen value for each user.

(A) True (B) False

Solution: False, encrypted passwords can eventually be reversed if a key is leaked, unlike
hash functions. It is not unlikely that a key or some form of key access will be leaked if the
password database is also leaked, since the server needs to access the key to verify logins.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 27 CS 161 – Summer 2023

Q2.14 Evanbot tried to design a secure file system, but forgot to add integrity and authenticity features.
He’s now struggling to rewrite the entire codebase to add these features.

True or False: Evanbot violated Design in Security from the Start.

(A) True (B) False

Solution: True

Q2.15 CS161 staff spent all semester implementing a single strong security feature to their new website.
They figured this would be enough to prevent any pesky attackers, so they stored the exam on the
website. Unfortunately, a student Mallory, was able to bypass the feature, and now has access to
the exam!

True or False: CS161 staff violated Separation of Responsibility.

(A) True (B) False

Solution: False

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 27 CS 161 – Summer 2023

Q3 Memory Safety Exploit: Across the Security-Verse (23 points)
Consider the following code:

1 void ve r s e () {
2 char mi l e s [2 5 6] ;
3 f g e t s (mi l e s , 2 57 , s t d i n) ;
4 }
5
6 void s p i d e r () {
7 v e r s e () ;
8 }
9
10 void main () {
11 char ∗ p e t e r = (char ∗) ma l l o c (1 2 8) ;
12 g e t s (p e t e r) ;
13 p r i n t f ("%x " , p e t e r) ;
14 s p i d e r () ;
15 }

Stack at Line 2

RIP of main

SFP of main

(1)

(2)

(3)

(4)

(5)

(6)
Assumptions:

• You may use SHELLCODE as a 120-byte shellcode.
• ASLR is enabled (including the code segment), but all other memory safety defenses are disabled.
• Assume that ASLR will always randomize the value of the SFP of verse to end with a least
significant byte (LSB) in the range of 0x10 - 0xfc (e.g. the LSB will never be 0x00 or 0x04).

• You may use the variable ADDR to represent the output of printf on line 13, converted into a
4-byte, little-endian, byte string. You can directly use this without casting, converting, or slicing.

For the following 2 subparts, one variable should go in each row of the stack diagram. Assume the program
is paused at a breakpoint on line 2.

Q3.1 (2 points) What values go in blanks (1), (2), and (3) in the stack diagram above?

(A) (1) RIP of spider (2) SFP of spider (3) peter
(B) (1) peter (2) RIP of spider (3) SFP of spider
(C) (1) RIP of spider (2) peter (3) SFP of spider

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 6 of 27 CS 161 – Summer 2023

Q3.2 (2 points) What values go in blanks (4), (5), and (6) in the stack diagram above?

(A) (4) SFP of verse (5) RIP of verse (6) peter
(B) (4) RIP of verse (5) SFP of verse (6) miles[256]
(C) (4) miles[256] (5) RIP of verse (6) SFP of verse

Solution:

RIP of main

SFP of main

peter

RIP of spider

SFP of spider

RIP of verse

SFP of verse

miles[256]

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 7 of 27 CS 161 – Summer 2023

Q3.3 (10 points) Provide inputs to the program that will execute shellcode with 100% probability. Use
Python syntax (from project 1).

Input to gets on Line 12:

Solution: SHELLCODE + '\n'

Input to fgets on Line 3:

Solution: ADDR * 64

Solution: The key to this question is the fgets on Line 3 with a size input of 257. This
allows us to fill up the buffer and then execute an off-by-one exploit by overwriting the
least-significant byte of the SFP of verse.

Once we overwrite the SFP of verse with a null terminator, we are guaranteed to point
somewhere into miles with at least 16 bytes in the buffer left above the pointer, since the
problem specified the LSB is at least 0x10. We can use this to cause the EBP to move into this
buffer, and eventually move the ESP into the buffer after the return from spider.

Since ASLR is enabled, however, we need a way to access the address of a buffer where
SHELLCODE is located. The printf("%x", peter) line does this for us, printing out the
hexadecimal value of char *peter (the address of the buffer on the heap), not the value at
char *peter. This is represented by the variable ADDR per the assumptions in the problem
statement. We then need to fill peter with SHELLCODE.

Given this address, all that remains is to fill the entire miles buffer with ADDR such that the
off-by-one exploit will eventually pop one of the addresses into the EIP.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 8 of 27 CS 161 – Summer 2023

Q3.4 (4 points) If we replaced line 13 with printf("%x", &peter);, is an exploit that executes
SHELLCODE still possible?

(A) Yes, with 100% probability

(B) Yes, with probability less than 100%

(C) No

Solution: Printing out &peter gives us a pointer to the stack (position (1) in the diagram).
This means we cannot put SHELLCODE into the heap, since we have no way of finding the
heap address with ASLR.

However, since ASLR preserves relative offsets, we can use the fact we know the distance
between &peter and the start of the miles buffer to turn &peter into &miles. We can then
place SHELLCODE into miles and fill the rest of the buffer with &miles. The probability that
the SFP gets changed into the section with addresses is now less than 100% (actually ≈ 50%)
but the exploit is still possible.

Q3.5 (5 points) Assume your exploit in Q3.3 was correct. For this subpart only, assume the LSB of
the SFP of verse is 0x00. Would this exploit still work?

(A) Yes (B) No

Briefly justify your answer.

Solution: If the LSB of the SFP of function3 was 0x00, we would not be able to redirect
out pointer downwards into our buffer and complete the off by one exploit.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 9 of 27 CS 161 – Summer 2023

Q4 Memory Safety Exploit: Snacktime (24 points)

Consider the following code:

1 void g o l d f i s h (char ∗ po t a t o) {
2 f g e t s (po ta to , 2 56 , s t d i n) ;
3
4 i n t 8 _ t ch ip = s t r l e n (po t a t o) ;
5 p r i n t f ("%s " , &po t a t o [ch ip]) ;
6
7 g e t s (p o t a t o) ;
8 }
9
10 void main () {
11 char c o l a [2 5 6] ;
12 g o l d f i s h (c o l a) ;
13 }

Stack at Line 4

RIP of main

SFP of main

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Assumptions:

• Stack canaries are enabled, and all other memory safety
defenses are disabled (unless otherwise specified).

• None of the bytes of any stack canaries are a null byte.
• You run GDB once and find that the cola buffer is located at the address 0xff00caf0.

For the following 2 subparts, assume the program is paused at a breakpoint on line 4.

Q4.1 (2 points) Which values go in blanks (1), (2), and (3) in the stack diagram above?

(A) (1) cola[256] (2) canary (3) potato
(B) (1) canary (2) cola[256] (3) RIP of goldfish
(C) (1) canary (2) potato (3) cola[256]
(D) (1) canary (2) cola[256] (3) potato

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 10 of 27 CS 161 – Summer 2023

Q4.2 (2 points) Which values go in blanks (4), (5), (6), and (7) in the stack diagram above?

(A) (4) SFP of goldfish (5) canary (6) chip (7) potato
(B) (4) RIP of goldfish (5) SFP of goldfish (6) canary (7) chip
(C) (4) SFP of goldfish (5) potato (6) canary (7) chip
(D) (4) RIP of goldfish (5) SFP of goldfish (6) chip (7) canary

Solution:

rip main

sfp main

canary

cola[256]

potato

rip goldfish

sfp goldfish

canary

chip

Q4.3 (3 points) Which vulnerability is present in the code?

(A) Off-by-one vulnerability

(B) Signed/unsigned vulnerability

(C) Format string vulnerability

(D) None of the above

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 11 of 27 CS 161 – Summer 2023

Q4.4 (10 points) Assuming you have a 252-byte SHELLCODE, provide inputs for fgets and gets that
executes the SHELLCODE. You may use the variable OUTPUT to represent the output of printf on
line 5. Use Python syntax (from project 1).

Reminder: On one execution of the program, all stack frames have the same canary value.

fgets:

Solution: 'A' * 240 + '\x00' + 'A' * 14

gets:

Solution: SHELLCODE + 'A' * 4 + OUTPUT[0:4] + 'A' * 4 + \xf0\xca\x00\xff

Solution: The first input to fgets provides an input to the cola buffer such that a null byte
is located at index 240. Thus, when strlen is called on this string, its length will be reported
as 240. Note that strlen returns a number of type size_t (which is an unsigned, 4-byte
integer), but we store its result in a variable of type int8_t (which a signed, 1-byte integer).
Thus, the value 240 will be treated as -16 when stored in chip.

Then, the printf call on line 5 will print bytes beginning at -16th index of the cola array.
This is where the canary for the goldfish stack frame is, so the first four bytes printed will
be the canary value. Now that we have leaked the value of the canary, we can slice it from the
OUTPUT variable with OUTPUT[0:4] and use it as part of a standard buffer overflow to the
gets call on line 7.

Our input to gets starts with the shellcode and this will fill up cola upto the last four bytes.
We then put four garbage bytes to fill up the rest of cola Right after that, we overwrite the
canary with itself (which we just got from OUTPUT[0:4]. Then, we write four garbage bytes
to overwrite the SFP of main. Finally, we overwrite the RIP of main with the address of the
shellcode, which is the address of the cola buffer. From the assumptions, we found that this
address is 0xff00caf0. We just need to ensure that we store it in little-endian form.

Q4.5 (2 points) For this subpart only, assume that non-executable pages are enabled (in addition to
stack canaries).

True or False: The exploit from the previous subpart would still cause the shellcode to be
executed.

(A) True (B) False

Solution: False. The only place in memory we can write the shellcode to in this code is on
the stack, which is necessarily a writeable portion of memory. Thus, whereever we place our
shellcode will therefore be non-executable and our shellcode will not be able to run.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 12 of 27 CS 161 – Summer 2023

Q4.6 (5 points) For this subpart only, assume that ASLR is enabled (in addition to stack canaries).

Would it still be possible to exploit this program with overwhelming probability?

(A) Possible (B) Not Possible

If you selected Possible, what conditions need to be true for the exploit to succeed? If you selected
Not Possible, list which addresses in your exploit from above could no longer be learned by the
attacker.

Solution: This exploit is still possible, because the printf may read past the canary and also
leak the SFP of goldfish. This address can be used as a relative address to find the address
of the RIP of main. However, we need the canary and the 3 least significant bytes of the SFP
to be non-null to avoid terminating the printf early.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 13 of 27 CS 161 – Summer 2023

Q5 Cryptography: All or Nothing Security (20 points)
EvanBot decides to modify AES-CTR in order to provide all-or-nothing security. All-or-nothing
security means that modifying any part of the ciphertext will make the entire plaintext decrypt to some
sort of "garbage" output.

EvanBot designs the following scheme to encryptM = (M1,M2, . . . ,Mn):

1. EvanBot generates a new random key K2 on top of the original key K1. Note that K2 is not
known to the decryptor, even thoughK1 is.

2. EvanBot transformsM into a "pseudomessage"M ′ by settingM ′
i = Mi ⊕ EK2(i).

3. EvanBot adds the blockM ′
n+1 = H(M ′

1 ⊕ 1)⊕H(M ′
2 ⊕ 2)⊕ . . .⊕H(M ′

n ⊕ n)⊕K2.
4. EvanBot derives the ciphertext C = Enc(K1,M

′) using AES-CTR with keyK1 and IV IV .

First, we will walk through the decryption process for this all-or-nothing scheme. Fill in the blanks for
the following by answering the multiple-choice subparts below:

1. CodaBot receives C .
2. CodaBot decrypts C with keyK1 to recover .
3. CodaBot setsK2 =M ′

n+1⊕ .
4. CodaBot finds i-th original message block asMi = .

Q5.1 (2 points) Select the correct option for the blank on Step 2:

(A)K2

(B) H(M ′
1 ⊕ 1)⊕ . . .⊕H(M ′

n ⊕ n)

(C)M ′
i ⊕ EK2(i)

(D)M ′

Solution: We first need to decrypt the ciphertext C , which decrypts toM ′ (the pseudomes-
sage) as stated in Step 4 of the encryption process.

Q5.2 (2 points) Select the correct option for the blank on Step 3:

(A)K2

(B) H(M ′
1 ⊕ 1)⊕ . . .⊕H(M ′

n ⊕ n)

(C)M ′
i ⊕ EK2(i)

(D)M ′

Solution: We now need to recoverK2 in order to decrypt the pseudomessage into the real
message. By re-arranging the formula from Step 3 of the encryption process, we find that
K2 = M ′

n+1 ⊕H(M ′
1 ⊕ 1)⊕ . . .⊕H(M ′

n ⊕ n).

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 14 of 27 CS 161 – Summer 2023

Q5.3 (2 points) Select the correct option for the blank on Step 4:

(A)K2

(B) H(M ′
1 ⊕ 1)⊕ . . .⊕H(M ′

n ⊕ n)

(C)M ′
i ⊕ EK2(i)

(D)M ′

Solution: We can now recover the real message by XOR-ing out EK2(i) with the i-th block
per Step 2 of the encryption process.

Q5.4 (5 points) Explain how modifying an arbitrary ciphertext block prevents recovery of any block
of the original message.

HINT: Show that we cannot recoverK2 if any ciphertext block is modified.

Solution: Say we modify some Ci to C ′
i. We then decryptM ′

i (the i-th pseudomessage block)
to some garbageM∗i

i .

Recall that we recover K2 by XOR-ing the hashes of all M ′
i with the last ciphertext block.

Therefore, since one of the inputs to these hashes is wrong, the entire XORwill be irrecoverably
incorrect, since a small change in a hash input will lead to a wildly different output (avalanche
effect). This is important to note, because otherwise an attacker could predictably modify the
ciphertexts to cancel out their differences and recover the sameK2 (see next subpart).

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 15 of 27 CS 161 – Summer 2023

Q5.5 (5 points) EvanBot wonders if it’s really necessary to have the hash function used in Step 3, and
decides to replace Step 3 with this new step:

3. EvanBot adds the block (M ′
1 ⊕ 1)⊕ (M ′

2 ⊕ 2)⊕ . . .⊕ (M ′
n ⊕ n)⊕K2 to the end ofM ′.

Show that it is possible to tamper with the order of the message blocks, i.e. by swapping two
blocks. Note that "tamper" means the message will be decrypted to something different, but not all
blocks will turn to garbage (i.e. not "all or nothing").

Solution: Say we swap M ′
1 and M ′

2. When decrypting, the client will then successfully
compute K2 with the expression above.

Since we are using AES-CTR, we decryptM1 = EK(IV +1)⊕C2 andM2 = EK(IV +2)⊕C1.
Note that theC1, C2 in the decryption equations are swapped since we swapped the ciphertext.
We then see that (since XOR is commutative):

((EK(IV + 1)⊕ C2)⊕ 1)⊕ ((EK(IV + 2)⊕ C1)⊕ 2) . . .

= ((EK(IV + 1)⊕ C1)⊕ 1)⊕ ((EK(IV + 2)⊕ C2)⊕ 2) . . .

= (M ′
1 ⊕ 1)⊕ (M ′

2 ⊕ 2) . . .

This does not hold with the hash version, since the inputs to the hash changing even a little bit
change the output dramatically (i.e. the XOR does not commute through the hash function).

Q5.6 (4 points) Does the original all-or-nothing scheme (from the beginning of the question) provide
integrity?

(A) Yes (B) No

Explain why or why not.

Solution: This scheme does not provide integrity, since we cannot detect tampering. The
all-or-nothing property just causes them to decrypt garbage, but this is not sufficient to provide
integrity. For example, tampering with a normal AES ciphertext (without MAC) also causes
them to decrypt a (at least partially) garbage message, but does not provide integrity.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 16 of 27 CS 161 – Summer 2023

Q6 Cryptography: One-Time Signatures (24 points)
One-time signatures are a class of digital signatures that can only sign a single message before
becoming insecure.

Consider a scheme to sign a n-bit message m using a hash function H with 256 bit output:

1. Generate n pairs of random 256-bit numbers as the private key, denoted SKi for the i-th pair.
SKi,j for j = 0 or j = 1 represents the first or second item in the pair, respectively.

2. Publish the public key as the list of all hashed secret key pairs: PKi,j = H(SKi,j).
3. To sign a n-bit message m, we consider its binary representation: m0,m1, . . . ,mn−1. The

signature S = (S0, S1, . . . , Sn−1) is defined as Si = SKi,mi .

In other words, for each bit mi, if mi = 0 we choose the first item from the i-th secret key pair.
Otherwise, we choose the second item.

SK0,0 SK1,0 SK2,0

SK0,1 SK1,1 SK2,1

SK0

0

SK1

1

SK2

0

Pictured: Signing the binary message "010". The final signature is (SK0,0, SK1,1, SK2,0).

Q6.1 (4 points) Alice has received a message M from Bob, with the one-time signature S using key
PK . Select the correct option for verifying whether this signature is valid.

(A) Verify that H(Si) = PKi,mi for 0 ≤ i < n

(B) Verify that Si = H(PKi,mi) for 0 ≤ i < n

(C) Verify that Si = PKi,mi for 0 ≤ i < n

(D) Invert H to verify H−1(PKi,mi) = Si,mi

Solution: Since the public key is just the hash of the secret key, verifying the signature is
equivalent to verifying that the given secret key corresponds to that public key by hashing
and comparing.

Since hash functions are one-way, this proves we knew of the secret key to the given public
key.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 17 of 27 CS 161 – Summer 2023

Alice and Bob forget that these signatures are one-time use only and accidentally sign two different
n-bit messages with the same secret key: a message of all zeroes, and a message of all ones.

Q6.2 (8 points) Explain how Eve can forge arbitrary n-bit messages using (possibly not all of) Alice’s
public key and the two previous signatures.

Solution: The first signature (on all zeroes) is just a collection of SKi,0 for all i. Likewise,
the second signature is just SKi,1 for all i, meaning Eve now sees the entire secret key.

Consider a different situation: Alice sends two different signed messages, but they only differ in b bits
instead of differing in all n bits.

Q6.3 (6 points) How many new messages (excluding those already sent by Alice) can Eve forge in this
new situation?

(A) 0 (B) 2b − 2 (C) 2n−b − 2 (D) 2n − 2

Explain your reasoning.

Solution: For the positions in which the bits differ, Eve can forge that bit position arbitrarily
since she now knows both elements of that given pair. In the positions in which they do not
differ, Eve is forced to use that specific bit value, since they only know one of two Si,b.

Therefore, since b bits are different between the two messages, we can forge 2b − 2 different
messages. The subtracted 2 is there because 2 messages have already been sent.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 18 of 27 CS 161 – Summer 2023

Q6.4 (6 points) Alice and Bob want to reduce the size of the public keys for an individual one-time
signature scheme, without reducing its security.

Design a scheme that reduces the size of a one-time signature public key to exactly 256
bits.

HINT: The constraint only applies to the publicly trusted public key. The signature itself may or may
not have additional information included that does not have to be constant space.

HINT: The output of H is 256 bits.

Describe how to construct the new public key:

Solution: We can use aMerkle tree, hash list, or similar to reduce the public key representation
to a single hash value. When we publish a signature, we then include a proof that the used
public key corresponds to the public hash.

For example, our new public key can simply be H(PK0,0∥PK0,1∥ . . . ∥PKn,0∥PKn,1).

There are plenty of alternative solutions.

Describe how to produce a signature using this new scheme:

Solution: Using the previous example, our signature must now include the entire public
key (or at least the public keys whose secret key entries weren’t used). We send S and
PK0,0, PK0,1, . . . , PKn,0, PKn,1. The verifier can check that secret keys in the signature
hash to values in the public key, and check that the real public key values hash to the short
public key.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 19 of 27 CS 161 – Summer 2023

Q7 Cryptography: Oblivious Transfer (26 points)
A user of a popular document storage website wishes to access one of two possible documents (labeled
m1 and m2), without the server knowing which document was accessed. They decide to use an
oblivious transfer scheme. We will consider a 1-of-2 oblivious transfer scheme, in which the user
accesses eitherm1 or m2 (but not both).

Clarification during exam: You may assume Enc refers to an IND-CPA symmetric encryption scheme.

Clarification during exam: i refers to the document the user wishes to access (if i = 1, they access m1,
if i = 2, they accessm2).

Server User

1. The server chooses a random number a mod p
and sends A = ga mod p.

2. The user chooses a random number b. If i = 1,
they send B = gb mod p. If i = 2, they send B =
Agb mod p.

3. The server computes k1 = Ba and k2 =
(︁
B
A

)︁a
Next, they send c1 = Enc(k1,m1) and c2 =
Enc(k2,m2).

4. [Answer to Q7.5]

A

B

c1, c2

Q7.1 (2 points) When i = 1, what value does the server derive for k1?

(A) gab mod p, (B) gab−a2

mod p
(C) gab+a2

mod p
(D) Agab

mod p

Solution: (gb)a ≡ gab mod p

Q7.2 (2 points) When i = 1, what value does the server derive for k2?

(A) gab mod p, (B) gab−a2

mod p
(C) gab+a2

mod p
(D) Agab

mod p

Solution: (g
b

A)a ≡ gab−a2 mod p

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 20 of 27 CS 161 – Summer 2023

Q7.3 (2 points) When i = 2, what value does the server derive for k1?

(A) gab mod p, (B) gab−a2

mod p
(C) gab+a2

mod p
(D) Agab

mod p

Solution: (Agb)a ≡ gab+a2 mod p

Q7.4 (2 points) When i = 2, what value does the server derive for k2?

(A) gab mod p, (B) gab−a2

mod p
(C) gab+a2

mod p
(D) Agab

mod p

Solution: (Agb

A)a ≡ gab mod p

Q7.5 (4 points) Give an expression for ki (the i-th document key) in terms of (possibly not all of)
A,B, b, ci, g, p.

Solution: Alice should recover ki = Ab and then decrypt the respective ciphertext ci using
ki.

To see why ki = Ab, we can consider simple casework. Note that A = ga mod p regardless
of i, meaning Ab ≡ (ga)b ≡ gab mod p across both cases.

For i = 1, B = ga mod p. The server computes k1 as k1 = Ba ≡ (gb)a ≡ gab mod p, so
both k1 match.

For i = 2, B = Aga mod p. The server computes k2 as k2 = (BA)
a ≡ (Agb

A)a ≡ gab mod p,
so both k2 match.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 21 of 27 CS 161 – Summer 2023

Q7.6 (3 points) Which option best describes why the server is not able to tell which document the user
has chosen to read?

(A) Since b is randomly chosen, gb mod p will look random to the server.

(B) The server cannot solve the discrete logarithm to recover a from ga mod p.

(C) The server cannot tell the difference between gb mod p and Agb ≡ ga+b mod p.

Solution:
Option (A) is technically true but not the best solution.

Option (B) is not relevant, since the server knows a.

Option (C) is the best choice, since the problem of identifying i comes down to detecting
whether the client has sent gb mod p or Agb mod p.

Q7.7 (3 points) Which option best describes why the user is not able to readmore than a single document
per request?

(A) The encryption function used is IND-CPA secure.

(B) The user cannot derive gab±a2 mod p despite knowing gab mod p.

(C) The server will only derive k1 or k2, but not both.

Solution:
Option (A) is technically true but not the best solution.

Option (B) is correct, since to decrypt the other document, the client needs to find gab±a2 . This
problem is intractable, since it reduces to recovering ga2 mod p from ga mod p.

Option (C) is incorrect, the server derives both keys.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 22 of 27 CS 161 – Summer 2023

The user wants to expand their document storage from 2 to 3 documents, and need to update their
oblivious transfer scheme to account for this. They know that Steps 1 and 4 from the previous scheme
will stay the same, but still need to update Steps 2 and 3.

Q7.8 (4 points) The new Step 2 is as follows:

"The user chooses a random number b. If i = 1, they send B = gb mod p. If i = 2, they send
B = Agb mod p. If i = 3, they send B = ."

Give an expression for the blank in this new step.

Solution: Replace step 2 blank with B = A2gb mod p.

Q7.9 (4 points) The new Step 3 is as follows:

"The server computes k1 = Ba, k2 =
(︁
B
A

)︁a, and k3 = . Next, they send
c1 = Enc(k1,m1), c2 = Enc(k2,m2), and c3 = Enc(k3,m3)."

Give an expression for the blank in this new step.

Solution: Replace step 3 blank with k3 =
(︁

B
A2

)︁a form3.

The proof of correctness follows much the same: when i = 3, the server gets B = A2gb

mod p and computes
(︁

B
A2

)︁a ≡
(︂
A2gb

A2

)︂a
≡ gab mod p.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 23 of 27 CS 161 – Summer 2023

(this page is intentionally blank)

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 24 of 27 CS 161 – Summer 2023

Nothing on this page will affect your grade in any way.

(Optional) Post-exam Activity: Battleship
EvanBot wants to play battleship with CS 161 students. EvanBot has chosen the positions of the ships on
their board, but won’t reveal them until after the exam. However, they have published a SHA−3 hash of
their board and ship locations so you can verify they haven’t changed them later:

H(board) = 0xd726c59246ede23df594586246d5983924d00a06a7736ab67aa89c1db1461688

Now you have the chance to try and hit their ships. On the grid below, mark five squares with an X where
you believe EvanBot has placed their ships. After the exam, EvanBot will reveal their board and you can
see how many ships you hit.

J
I
H
G
F
E
D
C
B
A

1 2 3 4 5 6 7 8 9 10

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 25 of 27 CS 161 – Summer 2023

Solution: Below is a grid where a o in a square indicates one of EvanBot’s boats is located there.

J
I
H
G
F
E
D
C
B
A

1 2 3 4 5 6 7 8 9 10

o

o

o o o

o

o

o

o o o o

o

o

o

o

o

To verify that EvanBot has not modified their board from before the exam, you can verify the hash
they published by taking the SHA− 3 hash of the following ASCII form of the above board.

+---+---+---+---+---+---+---+---+---+---+----+
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
+---+---+---+---+---+---+---+---+---+---+----+
A			o							
B			o					o		
C			o					o		
D			o							
E			o					o	o	o
F										
G										
H							o			
I							o			
J	o	o	o	o			o			
+---+---+---+---+---+---+---+---+---+---+----+

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 26 of 27 CS 161 – Summer 2023

Comment Box
Congratulations for making it to the end of the exam! Feel free to leave any final thoughts, comments,
feedback, or doodles here:

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 27 of 27 CS 161 – Summer 2023

