
CS 161
Summer 2024

Introduction to
Computer Security Midterm

Name:

Student ID:

This exam is 110 minutes long.

Question: 1 2 3 4

Points: 0 16 17 17

Question: 5 6 7 Total

Points: 13 20 17 100

For questions with circular bubbles, you may
select only one choice.

Unselected option (completely unfilled)
Only one selected option (completely filled)
Don’t do this (it will be graded as incorrect)

For questions with square checkboxes, you may
select one or more choices.

You can select
multiple squares (completely filled)

Anything you write outside the answer boxes or
you cross out will not be graded. If you write mul-
tiple answers, your answer is ambiguous, or the
bubble/checkbox is not entirely filled in, we will
grade the worst interpretation.

Pre-exam activity (0 points):
Evanbot is in charge of managing a zoo. Uh oh!
Evanbot lost the key and one animal escaped.

Circle the one you believe is missing!

To prove EvanBot won’t lie (to their boss), here’s the
SHA256 hash of the animal that escaped:

cd08c4c4316df20d9c30450fe776dcde4810029e641cde526c5bbffec1f770a3

Q1 Honor Code (0 points)
I understand that I may not collaborate with anyone else on this exam, or cheat in any
way. I am aware of the Berkeley Campus Code of Student Conduct and acknowledge
that academic misconduct will be reported to the Center for Student Conduct and may
further result in, at minimum, negative points on the exam.

Read the honor code above and sign your name:

Midterm - Page 1 of 18

Q2 True/False (16 points)
Each true/false is worth 1 point.

Q2.1 True or False: A 64 byte char array on the stack starting at 0xFFFFD840 ends at 0xFFFFD8A4.

True False

Q2.2 True or False: If the address 0x161ABDAC is stored as a pointer on the stack, then 0x16 is stored
at the lowest memory address in a big-endian system.

True False

Q2.3 Evanbot just designed a completely new security system to protect their pancakes. Evanbot is
convinced that nobody can learn about their system, so they don’t need to worry about Shannon’s
Maxim.

True or False: This is the intended application of Shannon’s Maxim.

True False

Q2.4 True or False: In CALL (compiler-assembler-linker-loader), the loader will create a binary exe-
cutable of the program you’re trying to run.

True False

Q2.5 True or False: In CALL, the bits in the code section of memory were originally outputted by the
assembler and linker.

True False

Q2.6 True or False: The x86 push instruction decrements the ESP and stores the new value on the
stack.

True False

Q2.7 True or False: Return-oriented programming is a way to subvert non-executable pages.

True False

Q2.8 True or False: A system implementing stack canaries, non-executable pages, ASLR, and PACs is
still exploitable.

True False

Q2.9 True or False: AES-ECB encryption can be parallelized.

True False

Midterm - Page 2 of 18

Q2.10 Alice is encrypting multiple messages with AES-CBC. She uses a PRNG to generate IVs for each
encryption. Mallory knows the seed to the PRNG.

True or False: Given a ciphertext, Mallory can learn the plaintext.

True False

Q2.11 True or False: LetEK be a secure block cipher. It is computationally feasible to find two messages
M0 andM1 such thatM0 ̸= M1 and EK (M0) = EK (M1), even if the attacker knowsK .

True False

Q2.12 True or False: Let H be a secure hash function. It is computationally feasible to find two messages
M0 andM1 such thatM0 ̸= M1 and H(M0) = H(M1).

True False

Q2.13 True or False: SHA-2 is vulnerable because given a message H(M) and the length, we are able to
rederive M .

True False

Q2.14 Alice and Bob want to ensure they can send messages without Mallory tampering with them,
therefore they use MACs. However, Mallory knows the keyK used to compute their MACs.

True or False: Alice and Bob could attach H(M) or HMAC(K,M), and Mallory could tamper
with the message either way.

True False

Q2.15 True or False: A man-in-the-middle attacker who cannot solve the discrete log problem can still
exploit Diffie-Hellman key exchange.

True False

Q2.16 True or False: Even if we have a solution to the discrete log problem, El Gamal is semantically
secure.

True False

Midterm - Page 3 of 18

Q3 What Would C Do (17 points)

There is a function system(char* command) in the C standard library. It can be used to execute the
shell command passed in as the argument command.

• system(char* command) is located in memory at 0x08FECB3A.
• something[] is located at 0xFF001020.
• padding[] is located at 0xFF001048.

1 void say_someth ing (void) {
2 char something [3 2] ;
3 g e t s (something) ;
4 }
5
6 in t main () {
7 char ∗ command = "whoami " ;
8 char padding [4] ;
9 say_someth ing () ;
10 return 0 ;
11 }

Our goal is to execute the command whoami. To do this, we will construct an input to the gets in line
3 that causes this program to call system("whoami").

The input to gets will take the following form:

"A" * (1) + (2)

Q3.1 (1 point) Which option provides the correct input and rationale for the first blank (1)?

32, to overwrite all of something

32, to overwrite all of something and the SFP of say_something

36, to overwrite all of something

36, to overwrite all of something and the SFP of say_something

Q3.2 (1 point) Which option provides the correct input and rationale for the second blank (2)?

0x08FECB3A, to overwrite the RIP of main with the address of system

0xFF001050, to overwrite the RIP of main with the address of system

0x08FECB3A, to overwrite the RIP of say_something with the address of system

0xFF001050, to overwrite the RIP of say_something with the address of system

Midterm - Page 4 of 18

Q3.3 (1 point) Is the stack variable padding necessary? Why or why not?

No, because system is expecting an RIP on the stack and looks above it for arguments

Yes, because system is expecting an RIP on the stack and looks above it for arguments

No, because system is expecting an SFP on the stack and looks above it for arguments

Yes, to prevent the overflow attack from overwriting whoami

Q3.4 (2 points) What purpose does command have on the stack?

It is the string "whoami" that is passed as the argument to system

It is the pointer to the string "whoami" that is passed as the argument to system

Q3.5 (1 point) When does the execution of the system function begin?

After main returns
After gets returns

After say_something returns
After gets begins execution

Q3.6 (2 points) What address is the ESP pointing to when the execution of the system function begins?
(i.e. just after the execution has been handed over to the system function)

0xFF001044

0xFF001050

0xFF00104C

0xFF001048

Midterm - Page 5 of 18

The following subparts are independent.

1 void s p e c i a l _ p r i n t f (char ∗ s t r) {
2 boo l s t op = f a l s e ;
3 for (unsigned int i = 0 ; i < s t r l e n (s t r) − 1 ; i ++) {
4 i f (s t r [i] == ’% ’ && s t r [i +1] == ’ x ’) {
5 s t op = t r u e ;
6 } e l se i f (s t r [i] == ’% ’ && s t r [i +1] == ’ d ’) {
7 s t op = t r u e ;
8 }
9 }
10 i f (s t op) return ;
11 in t s p e c i a l = 0xABCD ;
12 in t n o t _ s p e c i a l = 0xEEEE ;
13 p r i n t f (s t r) ;
14 }

Q3.7 (3 points) What could you pass in as str that would allow the value of special to be leaked?

(There are multiple possible answers; 0xABCD is not one of them. Using Python syntax is accept-
able.)

Midterm - Page 6 of 18

In this independent code sample, assume that:

• Calls to malloc always succeed.
• malloc always allocates space at the lowest available memory address.
• This code will not segfault, and can successfully read memory at any memory address.
• Nothing but the program itself will change the heap.

1 void s p e c i a l _ a l l o c () {
2 in t ∗ a l loc_num = ma l l oc (s i z eo f (in t)) ;
3 ∗ a l loc_num = 0xCDAB ;
4 p r i n t f (" C a l l 1 : %x " , ∗ a l loc_num) ;
5 f r e e (a l loc_num) ;
6 p r i n t f (" C a l l 2 : %x " , ∗ a l loc_num) ;
7 in t ∗ new_num = ma l l oc (s i z eo f (in t)) ;
8 ∗new_num = 0 x1234 ;
9 p r i n t f (" C a l l 3 : %x " , ∗ a l loc_num) ;
10 }

Q3.8 (2 points) What could the first call to printf possibly output? Select all that apply.

Call 1: cdab

Call 1: abcd

Call 1: followed by garbage bytes other than cdab or abcd
Call 1: followed by the address of alloc_num on the heap
None of the above

Q3.9 (2 points) What could the second call to printf possibly output? Select all that apply.

Call 2: cdab

Call 2: 1234

Call 2: followed by garbage bytes other than cdab or 1234
Call 2: followed by the address of alloc_num on the heap
None of the above

Q3.10 (2 points) What could the third call to printf possibly output? Select all that apply.

Call 3: cdab

Call 3: 1234

Call 3: followed by garbage bytes other than cdab or 1234
Call 3: followed by the address of alloc_num on the heap
None of the above

Midterm - Page 7 of 18

Q4 evan86 (17 points)
EvanBot has modified x86 so that it’s now impossible to directly overwrite the RIP of a function! If
EvanBot sees that the value at the RIP’s original stack location has been changed from its original value
at any point before the function returns, the program will immediately terminate.

Your goal is to find a way to execute the shellcode located in memory at 0xABBA0161. This shellcode is
outside the code section of memory.

• pancake_stack is located at 0xBFFEED00.

1 in t g e t _ u s e r _ i n pu t (i n t 8 _ t read_amount) {
2 char buf [2 4 8] ;
3 i f (read_amount > 2 4 8) return −1 ;
4 f r e a d (buf , 1 , read_amount , s t d i n) ;
5 memset (buf , 0 , 2 4 8) ;
6 return 0 ;
7 }
8
9 in t vuln () {
10 char pancake_ s t a ck [2 0] ;
11 f r e a d (pancake_s tack , 1 , 2 0 , s t d i n) ;
12 g e t _ u s e r _ i n pu t (________) ;
13 return 0 ;
14 }

Stack at Line 2

SFP of vuln

(1)

(2)

RIP of
get_user_input

SFP of
get_user_input

(3)

Q4.1 (1 point) What values go in blanks (1) through (3) in the stack diagram above?

(1) pancake_stack (2) read_amount (3) buf
(1) pancake_stack (2) buf (3) read_amount
(1) RIP of vuln (2) SFP of fread (3) buf
(1) RIP of vuln (2) pancake_stack (3) read_amount

Q4.2 (2 points) Which of these values does the exploit have to overwrite, either directly or indirectly,
to work? Select all that apply.

SFP of vuln
SFP of fread
SFP of get_user_input
RIP of get_user_input
None of the above

Midterm - Page 8 of 18

In the next three subparts, provide inputs that would cause the program to execute the shellcode.

If a part of the input can be any non-zero/garbage value, use 'A'*n to represent the n bytes of garbage.

Q4.3 (3 points) What is a value you could give for read_amount (the blank in line 12) that would allow
the exploit to work, AND would NOT allow overwriting the RIP of any function?

Q4.4 (4 points) Input to fread at Line 4:

Q4.5 (4 points) Input to fread at Line 11:

Q4.6 (1 point) When does the shellcode execute in this problem?

When get_user_input returns
When fread returns

When vuln returns
When buf is filled

Consider the following parts separately from one another.

Q4.7 (1 point) If ASLR were enabled for this problem, but you could correctly predict the addresses of
shellcode and pancake_stack, is this same exploit still possible?

Yes, because the layout of the stack itself will be arranged in the same way as before.
Yes, because ASLR wouldn’t change the addresses of things on the stack anyway.
No, because we couldn’t know for sure that the values on the stack will be arranged in the
same way as before.
No, because this would simply prevent overwriting the RIP, which is already prevented in
this problem.

Q4.8 (1 point) If non-executable pages were enabled for this problem, is this same exploit still possible?

Yes, because non-executable pages cannot be applied to anywhere in memory but the heap.
Yes, because non-executable pages can be circumvented, allowing us to execute shellcode
in the same way as before.
No, because the shellcode is located outside the code section, so it couldn’t be executed
directly.
No, because non-executable pages prevent overflow attacks in the first place.

Midterm - Page 9 of 18

Q5 Memory Safety: An "Off" Trip to the Zoo (13 points)
Evanbot and Codabot are volunteering as zookeepers today. Their jobs are to set up the exhibits for the
day. Consider the following vulnerable C code:

1 typedef s t ruc t {
2 char body [1 6] ;
3 } g i r a f f e ;
4
5 typedef s t ruc t {
6 char body [2 4] ;
7 } z eb r a ;
8
9 typedef s t ruc t {
10 char body [2 4] ;
11 } e l e phan t ;
12
13 void p l acement s () {
14 char zoo [6 4] ;
15 char l i s t [7 4] ;
16
17 memset (zoo , 0 , 6 4) ;
18 f g e t s (l i s t , 7 4 , s t d i n) ;
19
20 g i r a f f e ∗ g = ma l l oc (s i z eo f (g i r a f f e)) ;
21 f g e t s (g−>body , 17 , s t d i n) ;
22
23 z eb r a ∗ z = ma l l oc (s i z eo f (z e b r a)) ;
24 f g e t s (z−>body , 25 , s t d i n) ;
25
26 e l e phan t ∗ e = ma l l o c (s i z eo f (e l e phan t)) ;
27 f g e t s (e−>body , 25 , s t d i n) ;
28
29 for (in t i = 0 ; i < 7 1 ; i ++) {
30 zoo [i] = l i s t [i] ;
31 }
32 }

Stack at Line 31

RIP of
placements

(1)

zoo

(2)

(3)

...

Assumptions:
• malloc always allocates starting at the lowest possible address with enough free space.
• malloc always allocates the exact amount of memory required by its input, with no metadata.
• No other process is modifying the heap either before this function runs or concurrently.
• The heap starts at address 0x53ABFF08 and grows upwards.
• Your goal is to place and execute a 60-byte SHELLCODE.
• The address stored in the RIP of placements is 0x08AA7F3C.
• One-byte NOPs exist in memory at 0x53ABFF04, 0x53ABFF05, 0x53ABFF06, 0x53ABFF07.

Midterm - Page 10 of 18

EvanBot says you should go re-read the assumptions before proceeding!

The following x86 instructions exist in memory at the following locations listed below. Use this table
for the following subparts!

0x0861321A jmp *0x53ABFF04

0x01BAFFFF jmp *0x53ABFF08

0x08AA7F3F addl 0x8, %ebx

0xDEADBEEF jmp *0x08AA7F3C

0xffffca1c ret

Q5.1 (1 point) What values go in blanks (1) through (3) in the stack diagram above?

(1) SFP of placements (2) list (3) &g
(1) SFP of placements (2) list (3) i
(1) list (2) SFP of placements (3) i
(1) list (2) SFP of placements (3) &g

Q5.2 (1 point) Which vulnerability is present in the code?

ret2libc
Format string vulnerability

Signed/unsigned vulnerability
None of the above

In the next 4 subparts, provide inputs that would cause the program to execute SHELLCODE.

Q5.3 (8 points) Input to fgets at Line 18:

Input to fgets at Line 21:

Input to fgets at Line 24:

Input to fgets at Line 27:

Midterm - Page 11 of 18

Q5.4 (1 point) Would it still be possible for your exploit to work (without modifications) if stack canaries
are enabled?

Yes, because the exploit writes around the canary to overwrite values above the canary.

Yes, because the exploit never tries overwriting values above the canary.

No, because we cannot leak the canary value before overwriting it.

No, because the least-significant byte of the canary is overwritten by a null byte.

Q5.5 (2 points) Evanbot spilled syrup all over the stack, and now the value of the RIP of placements
is randomized to 4 random bytes immediately before line 17! What is the probability that this
exploit will still work now?

0

1/16

1/64

1/256

Midterm - Page 12 of 18

Q6 Symmetric Cryptography: AES-OHP (20 points)
EvanBot designs the AES-OHP mode of operation. Here are the encryption equations for i ≥ 2:

H1 = EK1(P1 ⊕ IV1 ⊕ IV2)

C1 = EK2(H1)

Hi = EK1(Pi ⊕ Ci−1 ⊕Hi−1)

Ci = EK2(Hi)

Q6.1 (1 point) Select the decryption formula for Hi, for i ≥ 1.

Hi = DK2(Ci)

Hi = DK1(Ci)

Hi = DK2(Ci−1)

Hi = DK2(Ci−1)

Q6.2 (1 point) Select the decryption formula for Pi, for i ≥ 2.

Pi = DK1(DK2(Ci))⊕Hi−1 ⊕ Ci−1

Pi = DK2(DK1(Ci))⊕Hi−1 ⊕ Ci−1

Pi = DK2(EK1(Ci))⊕Hi ⊕ Ci−1

Pi = DK1(EK2(Ci))⊕Hi ⊕ Ci−1

Q6.3 (1 point) Select all true statements.

Encryption is parallelizable.

Decryption is parallelizable.

None of the above

Midterm - Page 13 of 18

Q6.4 (2 points) Select all true statements.

AES-OHP is IND-CPA secure if IV1 and IV2 are independently randomly generated.

AES-OHP is IND-CPA secure if IV1 is known but IV2 is randomly generated.

AES-OHP is IND-CPA secure if both IV1 and IV2 are predictable.

AES-OHP is IND-CPA secure if both IV1 and IV2 are fixed constants.

None of the above

Alice uses AES-OHP mode to encrypt and send two 3-block messages to Bob. Alice obtains her IVs
from a server that provides IVs.

Eve is an attacker with these capabilities:

• Eve is an eavesdropper who can see the ciphertexts.
• Eve knows the value ofK2, whichmeans that given ciphertextC , she can compute the intermediate
Hi values.

• In between the two encryptions, Eve hacks into the IV server, which means that she can provide
malicious IVs for Alice’s second encryption.

IV
Server Alice BobEve

(1) (2)

Alice encrypts the first message, (P1, P2, P3):

(1) Alice requests an IV pair, IV1 and IV2, from the server.
(2) Alice computes and sends (IV1, IV2, C1, C2, C3). Eve can read this, and also derive (H1, H2, H3).

Between the two encryptions, Eve hacks into the IV server. Eve can now make the server return
IVs of her choice.

Then, Alice encrypts the second message, (P ′
1, P

′
2, P

′
3):

(1) Alice requests another IV pair, IV ′
1 and IV ′

2 (values chosen by Eve), from the server.
(2) Alice computes and sends (IV ′

1 , IV
′
2 , C

′
1, C

′
2, C

′
3). Eve can read this, and also derive (H ′

1, H
′
2, H

′
3).

For each subpart, select whether it is possible for Eve to answer the specified question with high
probability.

If you select “Eve can answer this,” write the values for IV ′
1 and IV ′

2 , and write a strategy for answering
the question.

Midterm - Page 14 of 18

A completely unrelated sample answer:

IV ′
1 = C ′

2 ⊕H1, and IV ′
2 = IV2.

Strategy: If IV ′
2 = C ′

3 and H2 = IV1, Eve answers yes. Else, no.

Q6.5 (5 points) Are Alice’s two messages identical? i.e. is it true that P1 = P ′
1, P2 = P ′

2, P3 = P ′
3?

Eve can answer this Eve cannot answer this

Q6.6 (5 points) Do the first two blocks of the second message match the second and third blocks of the
first message? i.e. is it true that P ′

1 = P2 and P ′
2 = P3?

Eve can answer this Eve cannot answer this

Q6.7 (5 points) Assuming the first blocks of both messages are different and Eve knows this—are the
last blocks of both messages the same? i.e. is it true that P3 = P ′

3?

Eve can answer this Eve cannot answer this

Midterm - Page 15 of 18

Q7 3-Way Diffie-Hellman (17 points)
Alice, Bob, and Charlie are interested in what it would mean to do a 3-way Diffie-Hellman handshake.
They decide on the following procedure.

1. Agree on a large prime p, and generator g.
2. Alice, Bob, and Charlie randomly choose private keys a, b, c (mod p).
3. They publish ga (mod p), gb (mod p), gc (mod p) respectively.
4. Using the information from step 3, they publish .

After steps 1-4 are completed, there is a shared key with the following security property: Alice, Bob, and
Charlie all know the value of the shared key, but an eavesdropper with access to all communications
cannot feasibly determine the shared key.

Q7.1 (2 points) What should the shared key be in this scheme?

Q7.2 (3 points) What should go in the blank for step 4? (Hint: it should be three values.)

Q7.3 (3 points) Explain how Alice derives the shared key using a and the published values. Write a
clear equation and/or sentence.

Suppose we are given a prime p and generator g. The Diffie-Hellman problem asks:

Given ga (mod p) and gb (mod p) for randomly generated a, b, what is the value of gab (mod p)?

Q7.4 (1 point) Suppose that Mallory is an attacker who can solve the Diffie-Hellman problem. Is the
current scheme used by Alice, Bob, and Charlie necessarily insecure against Mallory?

Yes No

Midterm - Page 16 of 18

Q7.5 (1 point) Suppose we’re given a black box that solves the discrete log problem. Can we use this to
solve the Diffie-Hellman problem?

Yes No Don’t know

Q7.6 (1 point) Mallory is a man-in-the-middle who is able to modify messages before they are published.
Mallory has read all messages but has not modified any messages before step 4 of the handshake.

Can Mallory force everyone to derive a secret key that she knows? (Note: different people may
derive different keys.)

Yes No

Q7.7 (1 point) Suppose now that we only know a and gab (mod p). Assume GCD(a, p− 1) = 1.

Is it computationally feasible to compute gb (mod p) with the information given?

Yes

No

Depends on whether the discrete log problem is computationally feasible.

Q7.8 (3 points) How does Diffie-Hellman provide forward secrecy? (Answer in 10 words or fewer.)

Q7.9 (2 points) Describe a drawback of asymmetric encryption. (The staff answer is one word.)

Midterm - Page 17 of 18

Post-Exam Activity
Nothing on this page will affect your grade.

Evanbot needs help putting on the fireworks show! Draw in your own fireworks below:

Comment Box
Congratulations for making it to the end of the exam! Feel free to leave any thoughts, comments, feedback,
or doodles here:

Midterm - Page 18 of 18

