
CS 161
Summer 2024

Introduction to
Computer Security Midterm

Solutions last updated: July 11th, 2024
Name:

Student ID:

This exam is 110 minutes long.

Question: 1 2 3 4

Points: 0 16 17 17

Question: 5 6 7 Total

Points: 13 20 17 100

For questions with circular bubbles, you may
select only one choice.

Unselected option (completely unfilled)
Only one selected option (completely filled)
Don’t do this (it will be graded as incorrect)

For questions with square checkboxes, you may
select one or more choices.

You can select
multiple squares (completely filled)

Anything you write outside the answer boxes or
you cross out will not be graded. If you write mul-
tiple answers, your answer is ambiguous, or the
bubble/checkbox is not entirely filled in, we will
grade the worst interpretation.

Pre-exam activity (0 points):
Evanbot is in charge of managing a zoo. Uh oh!
Evanbot lost the key and one animal escaped.

Circle the one you believe is missing!

To prove EvanBot won’t lie (to their boss), here’s the
SHA256 hash of the animal that escaped:

cd08c4c4316df20d9c30450fe776dcde4810029e641cde526c5bbffec1f770a3

Q1 Honor Code (0 points)
I understand that I may not collaborate with anyone else on this exam, or cheat in any
way. I am aware of the Berkeley Campus Code of Student Conduct and acknowledge
that academic misconduct will be reported to the Center for Student Conduct and may
further result in, at minimum, negative points on the exam.

Read the honor code above and sign your name:

Midterm - Page 1 of 27



Q2 True/False (16 points)
Each true/false is worth 1 point.

Q2.1 True or False: A 64 byte char array on the stack starting at 0xFFFFD840 ends at 0xFFFFD8A4.

True False

Solution: False, 64 bytes after 0xFFFFD840 is 0xFFFFD880. Remember, the stack grows
upwards and 64 bytes is 4 ∗ 161.

Q2.2 True or False: If the address 0x161ABDAC is stored as a pointer on the stack, then 0x16 is stored
at the lowest memory address in a big-endian system.

True False

Solution: True, in big-endian, the most significant bit (left-most) is stored at the lower
memory address. The opposite is true for little-endian.

Q2.3 Evanbot just designed a completely new security system to protect their pancakes. Evanbot is
convinced that nobody can learn about their system, so they don’t need to worry about Shannon’s
Maxim.

True or False: This is the intended application of Shannon’s Maxim.

True False

Solution: False, Shannon’s Maxim is the premise that we assume an attacker knows how our
system works and it applies regardless of whether or not it would be logistically impossible to
know this information, i.e. we should always assume an attacker knows our system.

Q2.4 True or False: In CALL (compiler-assembler-linker-loader), the loader will create a binary exe-
cutable of the program you’re trying to run.

True False

Solution: False, this is created by the assembler/linker, not the loader.

Midterm - Page 2 of 27



Q2.5 True or False: In CALL, the bits in the code section of memory were originally outputted by the
assembler and linker.

True False

Solution: True, the assembler and linker create the binary, which is what is ultimately loaded
into the code section of memory.

Q2.6 True or False: The x86 push instruction decrements the ESP and stores the new value on the
stack.

True False

Solution: True, this is the function of the push instruction as discussed in lecture.

Q2.7 True or False: Return-oriented programming is a way to subvert non-executable pages.

True False

Solution: True, in return-oriented programming we are essentially using already loaded code
to construct shellcode, which circumvents NX pages.

Q2.8 True or False: A system implementing stack canaries, non-executable pages, ASLR, and PACs is
still exploitable.

True False

Solution: True, while adding more defenses can make a system more safe, there may still be
vulnerabilities in code–this is why we always seek to find new ways to improve our security
systems even at the coding level!

Q2.9 True or False: AES-ECB encryption can be parallelized.

True False

Solution: True, each block of text in ECB is encrypted independently of the other blocks, so
it can be done in parallel.

Midterm - Page 3 of 27



Q2.10 Alice is encrypting multiple messages with AES-CBC. She uses a PRNG to generate IVs for each
encryption. Mallory knows the seed to the PRNG.

True or False: Given a ciphertext, Mallory can learn the plaintext.

True False

Solution: False, Mallory may be able to guess the values output by the PRNG (and thus
the IVs), but since IVs are supposed to be public anyway, this makes no difference to the
confidentiality of the ciphertext.

Q2.11 True or False: LetEK be a secure block cipher. It is computationally feasible to find two messages
M0 andM1 such thatM0 ̸= M1 and EK (M0) = EK (M1), even if the attacker knowsK .

True False

Solution: False. If the block cipher is secure, then following the bijection property of block
ciphers, it is not feasible to find messages that are different but are the same when encrypted.

Q2.12 True or False: Let H be a secure hash function. It is computationally feasible to find two messages
M0 andM1 such thatM0 ̸= M1 and H(M0) = H(M1).

True False

Solution: False, this is the collision resistance property of hashes.

Q2.13 True or False: SHA-2 is vulnerable because given a message H(M) and the length, we are able to
rederive M .

True False

Solution: False, SHA-2 is vulnerable because of length extension attacks, but these attacks
are not able to rederiveM .

Midterm - Page 4 of 27



Q2.14 Alice and Bob want to ensure they can send messages without Mallory tampering with them,
therefore they use MACs. However, Mallory knows the keyK used to compute their MACs.

True or False: Alice and Bob could attach H(M) or HMAC(K,M), and Mallory could tamper
with the message either way.

True False

Solution: True, a MAC is essentially a Hash with a key, if this key is publicly known then an
attacker can compute the MAC for any message which is equivalent to a Hash.

Q2.15 True or False: A man-in-the-middle attacker who cannot solve the discrete log problem can still
exploit Diffie-Hellman key exchange.

True False

Solution: True, remember aMITM in the Diffie-Hellman key exchange is able to compute keys
custom keys for the 2 communicating parties and can decrypt and encrypt any/all messages
sent. This is regardless of whether or not the discrete log problem has a solution.

Q2.16 True or False: Even if we have a solution to the discrete log problem, El Gamal is semantically
secure.

True False

Solution: False, given a way to solve the discrete log problem, an eavesdropper can recover
the private keys used in El Gamal from the public keys.

More explicitly, say Alice has chosen prime p, generator g, and private key a. Say Bob has
chosen private key b. Given the values of ga and gb (mod p), a person who can solve discrete
log can find a′ such that ga′ = ga (mod p), then calculate (gb)a′ = (ga

′
)b = gab (mod p).

Midterm - Page 5 of 27



Q3 What Would C Do (17 points)

There is a function system(char* command) in the C standard library. It can be used to execute the
shell command passed in as the argument command.

• system(char* command) is located in memory at 0x08FECB3A.
• something[] is located at 0xFF001020.
• padding[] is located at 0xFF001048.

1 void say_something(void) {
2 char something [32];
3 gets(something);
4 }
5
6 int main() {
7 char* command = "whoami";
8 char padding [4];
9 say_something ();
10 return 0;
11 }

Our goal is to execute the command whoami. To do this, we will construct an input to the gets in line
3 that causes this program to call system("whoami").

The input to gets will take the following form:

"A" * (1) + (2)

Q3.1 (1 point) Which option provides the correct input and rationale for the first blank (1)?

32, to overwrite all of something

32, to overwrite all of something and the SFP of say_something

36, to overwrite all of something

36, to overwrite all of something and the SFP of say_something

Solution: 32 (which is the size of something) + 4 (which is the size of the SFP) = 36 bytes to
write to reach the RIP.

Midterm - Page 6 of 27



Q3.2 (1 point) Which option provides the correct input and rationale for the second blank (2)?

0x08FECB3A, to overwrite the RIP of main with the address of system

0xFF001050, to overwrite the RIP of main with the address of system

0x08FECB3A, to overwrite the RIP of say_something with the address of system

0xFF001050, to overwrite the RIP of say_something with the address of system

Solution: We are overwriting the RIP of say_something (because this is the only function
in the options whose RIP is below command, which must be higher up on the stack than the
RIP to facilitate using it as an argument) with the address of system to change the flow of
execution, as in a typical overflow attack.

Q3.3 (1 point) Is the stack variable padding necessary? Why or why not?

No, because system is expecting an RIP on the stack and looks above it for arguments

Yes, because system is expecting an RIP on the stack and looks above it for arguments

No, because system is expecting an SFP on the stack and looks above it for arguments

Yes, to prevent the overflow attack from overwriting whoami

Solution: Clarification during exam: Q3.3: “necessary” means “necessary to conduct the
attack.” (7:36pm)

Yes–system expects to see an RIP on the stack and looks above it for arguments. padding
serves as extra space on the stack where the RIP would be were the function being called
normally, so the argument (char ptr to whoami) goes above it.

Q3.4 (2 points) What purpose does command have on the stack?

It is the string "whoami" that is passed as the argument to system

It is the pointer to the string "whoami" that is passed as the argument to system

Solution: system expects a pointer to a string (char*).

Midterm - Page 7 of 27



Q3.5 (1 point) When does the execution of the system function begin?

After main returns
After gets returns

After say_something returns
After gets begins execution

Solution: The RIP of say_something is overwritten, so when it returns the execution of
system will begin.

Q3.6 (2 points) What address is the ESP pointing to when the execution of the system function begins?
(i.e. just after the execution has been handed over to the system function)

0xFF001044

0xFF001050

0xFF00104C

0xFF001048

Solution: 0xFF001048. This is because execution of the system function begins as soon as the
RIP (of the function say_something) we have overwritten is popped off of the stack. Once
this happens, the next thing up on the stack (since we assume no compiler padding) is the
variable padding, which is located at 0xFF001048.

Midterm - Page 8 of 27



The following subparts are independent.

1 void special_printf(char* str) {
2 bool stop = false;
3 for (unsigned int i = 0; i < strlen(str) - 1; i++) {
4 if (str[i] == '%' && str[i+1] == 'x') {
5 stop = true;
6 } else if (str[i] == '%' && str[i+1] == 'd') {
7 stop = true;
8 }
9 }
10 if (stop) return;
11 int special = 0xABCD;
12 int not_special = 0xEEEE;
13 printf(str);
14 }

Q3.7 (3 points) What could you pass in as str that would allow the value of special to be leaked?

(There are multiple possible answers; 0xABCD is not one of them. Using Python syntax is accept-
able.)

Solution: Clarification during exam: Q3.7: You are allowed to leak other information alongside
the value of special. (7:27pm)

%c, %f, %X, %8x...

There are many possible solutions to this problem. All that was necessary was to use a format
specifier other than %d or %x to print out special (we clarified during the exam that it was
okay if you did that and also printed out not_special, for example).

Answers like ("%u", special) do not work, since we asked specifically for a value for the
char* str.

Due to a mistake in how the code was formatted, the code we wrote to prohibit %d or %x is not
run, so answers using those specifiers that printed out special’s value were also accepted.

Midterm - Page 9 of 27



In this independent code sample, assume that:

• Calls to malloc always succeed.
• malloc always allocates space at the lowest available memory address.
• This code will not segfault, and can successfully read memory at any memory address.
• Nothing but the program itself will change the heap.

1 void special_alloc () {
2 int* alloc_num = malloc(sizeof(int));
3 *alloc_num = 0xCDAB;
4 printf("Call 1: %x", *alloc_num);
5 free(alloc_num);
6 printf("Call 2: %x", *alloc_num);
7 int* new_num = malloc(sizeof(int));
8 *new_num = 0x1234;
9 printf("Call 3: %x", *alloc_num);
10 }

Q3.8 (2 points) What could the first call to printf possibly output? Select all that apply.

Call 1: cdab

Call 1: abcd

Call 1: followed by garbage bytes other than cdab or abcd
Call 1: followed by the address of alloc_num on the heap
None of the above

Solution: Option 1 only. This because this is just a normal call to printf–the %x specifier
will print out the value in hexadecimal, lowercase format.

Q3.9 (2 points) What could the second call to printf possibly output? Select all that apply.

Call 2: cdab

Call 2: 1234

Call 2: followed by garbage bytes other than cdab or 1234
Call 2: followed by the address of alloc_num on the heap
None of the above

Solution: Option 1 only. This because this is also just a normal call to printf–the %x specifier
will print out the value in hexadecimal, lowercase format. Note that we specified that only
this code will change the heap–despite the fact that the memory has been freed, the data there
only changes if it is overwritten, which has not yet happened.

Midterm - Page 10 of 27



Q3.10 (2 points) What could the third call to printf possibly output? Select all that apply.

Call 3: cdab

Call 3: 1234

Call 3: followed by garbage bytes other than cdab or 1234
Call 3: followed by the address of alloc_num on the heap
None of the above

Solution: Option 2 only. The printf call functions the same as before, but using the assump-
tion that malloc always allocates at the lowest available memory address, we can know that
new_num will occupy the same location on the heap as alloc_num, so printing out with a
reference to the address of alloc_num will print the value given to new_num.

Midterm - Page 11 of 27



Q4 evan86 (17 points)
EvanBot has modified x86 so that it’s now impossible to directly overwrite the RIP of a function! If
EvanBot sees that the value at the RIP’s original stack location has been changed from its original value
at any point before the function returns, the program will immediately terminate.

Your goal is to find a way to execute the shellcode located in memory at 0xABBA0161. This shellcode is
outside the code section of memory.

• pancake_stack is located at 0xBFFEED00.

1 int get_user_input(int8_t read_amount) {
2 char buf [248];
3 if (read_amount > 248) return -1;
4 fread(buf , 1, read_amount , stdin);
5 memset(buf , 0, 248);
6 return 0;
7 }
8
9 int vuln() {
10 char pancake_stack [20];
11 fread(pancake_stack , 1, 20, stdin);
12 get_user_input(________);
13 return 0;
14 }

Stack at Line 2

SFP of vuln

(1)

(2)

RIP of
get_user_input

SFP of
get_user_input

(3)

Q4.1 (1 point) What values go in blanks (1) through (3) in the stack diagram above?

(1) pancake_stack (2) read_amount (3) buf
(1) pancake_stack (2) buf (3) read_amount
(1) RIP of vuln (2) SFP of fread (3) buf
(1) RIP of vuln (2) pancake_stack (3) read_amount

Solution: Option 1. From top to bottom: pancake_stack is the first stack variable declared
in vuln, so it will be right under the SFP for that function. Next is the argument passed into
get_user_input, which is read_amount, since arguments are pushed onto the stack right
before the function is called. Finally, we see the stack variable that is declared first in the called
function get_user_input, buf.

Midterm - Page 12 of 27



Q4.2 (2 points) Which of these values does the exploit have to overwrite, either directly or indirectly,
to work? Select all that apply.

SFP of vuln
SFP of fread
SFP of get_user_input
RIP of get_user_input
None of the above

Solution: Only the SFP of get_user_input needs to be overwritten. Doing this will cause
the EBP to be misdirected during a return to a place of our choosing–in this exploit, inside
pancake_stack–which means that when there is a second return, the program will look
above this new EBP for an address to use as an RIP, which we can set to whatever we want.
The misdirection means that nothing else here needs to be overwritten for the exploit-by-sfp
to work.

In the next three subparts, provide inputs that would cause the program to execute the shellcode.

If a part of the input can be any non-zero/garbage value, use 'A'*n to represent the n bytes of garbage.

Q4.3 (3 points) What is a value you could give for read_amount (the blank in line 12) that would allow
the exploit to work, AND would NOT allow overwriting the RIP of any function?

Solution: -6 is the intended answer, and -5 and -4 also work and received full credit.

This question required some knowledge of two’s complement. Because of the if statement
in the code preventing numbers greater than 248 from being used, we need to circumvent
this check by exploiting a signed/unsigned vulnerability. The question asks for a value which
allows overwriting the SFP to get the exploit to work (see 4.2), but also a value which won’t
allow overwriting the RIP located right above the SFP. Because of the layout of the stack, it
was necessary to overwrite at least 2 bytes of the SFP to complete the exploit as intended.
Therefore, we need to write at least 250 bytes, but no more than 252. Represented as signed
int8_t values, this becomes -6, -5, or -4.

Q4.4 (4 points) Input to fread at Line 4:

Solution: "A" * 248 + "\x00\xED"

As mentioned in 4.2, our goal is to redirect the SFP of get_user_input to be inside of
pancake_stack. pancake_stack begins at the address 0xBFFEED00–meanwhile, the SFP as
it is contains an address certainly beginning with 0xBFFE. So, all that is needed is to overwrite
the last two bytes to get the SFP to point to pancake_stack.

Midterm - Page 13 of 27



Q4.5 (4 points) Input to fread at Line 11:

Solution: "A" * 4 + "\x61\x01\xBA\xAB" + "A" * 12

Having pointed the SFP to pancake_stack in the previous part, we now fill out
pancake_stack. The first 4 bytes represent the "fake SFP"–where the program believes
the SFP will be located after it executes one return. Above that is the "fake RIP"–in other
words, where we should put the address of shellcode. The rest of the array can then be filled
with garbage. It is not necessary to have the garbage at the end of the array.

Q4.6 (1 point) When does the shellcode execute in this problem?

When get_user_input returns
When fread returns

When vuln returns
When buf is filled

Solution: When vuln returns. This is because get_user_input returning will cause the esp
to point to pancake_stack–then, when vuln returns, the value 4 bytes above the esp is used
as the RIP.

Consider the following parts separately from one another.

Q4.7 (1 point) If ASLR were enabled for this problem, but you could correctly predict the addresses of
shellcode and pancake_stack, is this same exploit still possible?

Yes, because the layout of the stack itself will be arranged in the same way as before.
Yes, because ASLR wouldn’t change the addresses of things on the stack anyway.
No, because we couldn’t know for sure that the values on the stack will be arranged in the
same way as before.
No, because this would simply prevent overwriting the RIP, which is already prevented in
this problem.

Solution: Yes, option 1. ASLR may change where the stack is located, but it won’t change the
arrangement of data on the stack itself. If you can predict the addresses that are relevant to
the exploit, it can still be executed.

Midterm - Page 14 of 27



Q4.8 (1 point) If non-executable pages were enabled for this problem, is this same exploit still possible?

Yes, because non-executable pages cannot be applied to anywhere in memory but the heap.
Yes, because non-executable pages can be circumvented, allowing us to execute shellcode
in the same way as before.
No, because the shellcode is located outside the code section, so it couldn’t be executed
directly.
No, because non-executable pages prevent overflow attacks in the first place.

Solution: No. The shellcode for this problem isn’t located in the code section of memory–and
NX pages would be enabled for all memory outside of the code section. Therefore, the code
would not be able to be executed, and the exploit could not work in the same way.

Midterm - Page 15 of 27



Q5 Memory Safety: An "Off" Trip to the Zoo (13 points)
Evanbot and Codabot are volunteering as zookeepers today. Their jobs are to set up the exhibits for the
day. Consider the following vulnerable C code:

1 typedef struct {
2 char body [16];
3 } giraffe;
4
5 typedef struct {
6 char body [24];
7 } zebra;
8
9 typedef struct {
10 char body [24];
11 } elephant;
12
13 void placements () {
14 char zoo [64];
15 char list [74];
16
17 memset(zoo , 0, 64);
18 fgets(list , 74, stdin);
19
20 giraffe* g = malloc(sizeof(giraffe));
21 fgets(g->body , 17, stdin);
22
23 zebra* z = malloc(sizeof(zebra));
24 fgets(z->body , 25, stdin);
25
26 elephant* e = malloc(sizeof(elephant));
27 fgets(e->body , 25, stdin);
28
29 for (int i = 0; i < 71; i++) {
30 zoo[i] = list[i];
31 }
32 }

Stack at Line 31

RIP of
placements

(1)

zoo

(2)

(3)

...

Assumptions:
• malloc always allocates starting at the lowest possible address with enough free space.
• malloc always allocates the exact amount of memory required by its input, with no metadata.
• No other process is modifying the heap either before this function runs or concurrently.
• The heap starts at address 0x53ABFF08 and grows upwards.
• Your goal is to place and execute a 60-byte SHELLCODE.
• The address stored in the RIP of placements is 0x08AA7F3C.
• One-byte NOPs exist in memory at 0x53ABFF04, 0x53ABFF05, 0x53ABFF06, 0x53ABFF07.

Midterm - Page 16 of 27



EvanBot says you should go re-read the assumptions before proceeding!

The following x86 instructions exist in memory at the following locations listed below. Use this table
for the following subparts!

0x0861321A jmp *0x53ABFF04

0x01BAFFFF jmp *0x53ABFF08

0x08AA7F3F addl 0x8, %ebx

0xDEADBEEF jmp *0x08AA7F3C

0xffffca1c ret

Q5.1 (1 point) What values go in blanks (1) through (3) in the stack diagram above?

(1) SFP of placements (2) list (3) &g
(1) SFP of placements (2) list (3) i
(1) list (2) SFP of placements (3) i
(1) list (2) SFP of placements (3) &g

Solution: Option 1. SFP of placements follows the RIP. Below zoo is list, and the next
variable defined is the giraffe pointer g, so &g is put on the stack.

Q5.2 (1 point) Which vulnerability is present in the code?

ret2libc
Format string vulnerability

Signed/unsigned vulnerability
None of the above

Solution: None of the above. This is not ret2libc as this requires exploiting a function which
is part of the C standard library. There is no signed/unsigned vulnerability either as no signed
number are converted to unsigned numbers or vice-versa. There is no printf for a format
string vulnerability.

Midterm - Page 17 of 27



In the next 4 subparts, provide inputs that would cause the program to execute SHELLCODE.

Q5.3 (8 points) Input to fgets at Line 18:

Solution: "A" * 68 + \x1A\x32\x61

We input 68 bytes of garbage to overwrite all of zoo and 4 bytes for the SFP.

In order to change the RIP to the address of SHELLCODE, we need to point to the bot-
tom of the heap (see next parts for what that is). This is not possible as we are only able to
modify the 3 least significant bytes of the RIP which means we can’t overwrite it directly.
With our given x86 instructions, we can however rewrite to a jmp instruction that sends the
instruction pointer to the beginning of the heap. The only 2 instructions that do this are jmp
*0x53ABFF04 stored at 0x0861321A and jmp *0x53ABFF08 stored at 0x01BAFFFF.

Notice how the latter doesn’t have a matching MSB as the address stored at the RIP
so we cannot actually redirect the RIP to this instruction. The other one is reachable but
doesn’t point to the beginning of the heap, but 4 bytes below. The assumptions tell us that
there are 4 NOPs below the heap though so if the IP was set to 0x53ABFF04, it would go
down the NOP sled and execute the shellcode. Therefore, after garbage, we write the least
significant 3 bytes of this instruction in little-endian.

Input to fgets at Line 21:

Solution: SHELLCODE[:16]

The indicator that this problem requires split SHELLCODE is that we have no way of
overwriting the RIP to a place on the stack as we cannot modify the MSB of the RIP. The heap
is reachable though as shown above. We write the SHELLCODE starting here going up. We
write 16 bytes as fgets will automatically append one null byte to fill the 17 bytes allocated.
Since we call malloc for only size of the animals, we will continuously overwrite the null
bytes which each subsequent fgets call.

Input to fgets at Line 24:

Solution: SHELLCODE[16:40]

Refer to the explanations above.

Input to fgets at Line 27:

Solution: SHELLCODE[40:]

Refer to the explanations above.

Midterm - Page 18 of 27



Q5.4 (1 point) Would it still be possible for your exploit to work (without modifications) if stack canaries
are enabled?

Yes, because the exploit writes around the canary to overwrite values above the canary.

Yes, because the exploit never tries overwriting values above the canary.

No, because we cannot leak the canary value before overwriting it.

No, because the least-significant byte of the canary is overwritten by a null byte.

Solution: As we are overwriting the stack from zoo to the RIP, we need to know the canary
(which would exist below the SFP but above zoo) in order to overwrite it properly, but the
code above does not do so.

Q5.5 (2 points) Evanbot spilled syrup all over the stack, and now the value of the RIP of placements
is randomized to 4 random bytes immediately before line 17! What is the probability that this
exploit will still work now?

0

1/16

1/64

1/256

Solution: Clarification during exam: “this exploit” specifically refers to the solution you
wrote in the previous subparts.

In order to conduct the exact same exploit the, the MSB of the RIP would have to be
0x08, which has a 1/162 or 1/256 chance of occurring.

Midterm - Page 19 of 27



Q6 Symmetric Cryptography: AES-OHP (20 points)
EvanBot designs the AES-OHP mode of operation. Here are the encryption equations for i ≥ 2:

H1 = EK1(P1 ⊕ IV1 ⊕ IV2)

C1 = EK2(H1)

Hi = EK1(Pi ⊕ Ci−1 ⊕Hi−1)

Ci = EK2(Hi)

Q6.1 (1 point) Select the decryption formula for Hi, for i ≥ 1.

Hi = DK2(Ci)

Hi = DK1(Ci)

Hi = DK2(Ci−1)

Hi = DK2(Ci−1)

Solution: Clarification during exam: Q6.1: The right two options are interchangeable, i.e. we
will treat them as the same answer

The encryption formula for Ci is Ci = EK2(Hi), if we reverse this we get Hi = DK2(Ci).

Midterm - Page 20 of 27



Q6.2 (1 point) Select the decryption formula for Pi, for i ≥ 2.

Pi = DK1(DK2(Ci))⊕Hi−1 ⊕ Ci−1

Pi = DK2(DK1(Ci))⊕Hi−1 ⊕ Ci−1

Pi = DK2(EK1(Ci))⊕Hi ⊕ Ci−1

Pi = DK1(EK2(Ci))⊕Hi ⊕ Ci−1

Solution: The encryption formula is Hi = EK1(Pi ⊕ Ci−1 ⊕Hi−1).

Let’s decrypt both sides: DK1(Hi) = Pi ⊕ Ci−1 ⊕Hi−1.

Now XOR the values and we get: Pi = DK1(Hi)⊕ Ci−1 ⊕Hi−1.

When we plug the answer to the above question in we get Pi = DK1(DK2(Ci))⊕Hi−1⊕Ci−1.

Q6.3 (1 point) Select all true statements.

Encryption is parallelizable.

Decryption is parallelizable.

None of the above

Solution: The decryption formula does not rely on prior plaintexts, whereas the encryption
formula contains the previous ciphertext to compute.

Q6.4 (2 points) Select all true statements.

AES-OHP is IND-CPA secure if IV1 and IV2 are independently randomly generated.

AES-OHP is IND-CPA secure if IV1 is known but IV2 is randomly generated.

AES-OHP is IND-CPA secure if both IV1 and IV2 are predictable.

AES-OHP is IND-CPA secure if both IV1 and IV2 are fixed constants.

None of the above

Solution: The key realization here is that IV1 ⊕ IV2 is equivalent to a singular random IV
and as long as there is an element of randomness in this IV, then AES-OHP is IND-CPA secure.

By this logic Option 1 is true. Option 2 is also true as one of the IVs is random
which means the outputted IV will be random as well. Options 3 and 4 are equivalent and
there is no element of randomness which means AES-OHP is not IND-CPA secure.

Midterm - Page 21 of 27



Alice uses AES-OHP mode to encrypt and send two 3-block messages to Bob. Alice obtains her IVs
from a server that provides IVs.

Eve is an attacker with these capabilities:

• Eve is an eavesdropper who can see the ciphertexts.
• Eve knows the value ofK2, whichmeans that given ciphertextC , she can compute the intermediate
Hi values.

• In between the two encryptions, Eve hacks into the IV server, which means that she can provide
malicious IVs for Alice’s second encryption.

IV
Server Alice BobEve

(1) (2)

Alice encrypts the first message, (P1, P2, P3):

(1) Alice requests an IV pair, IV1 and IV2, from the server.
(2) Alice computes and sends (IV1, IV2, C1, C2, C3). Eve can read this, and also derive (H1, H2, H3).

Between the two encryptions, Eve hacks into the IV server. Eve can now make the server return
IVs of her choice.

Then, Alice encrypts the second message, (P ′
1, P

′
2, P

′
3):

(1) Alice requests another IV pair, IV ′
1 and IV ′

2 (values chosen by Eve), from the server.
(2) Alice computes and sends (IV ′

1 , IV
′
2 , C

′
1, C

′
2, C

′
3). Eve can read this, and also derive (H ′

1, H
′
2, H

′
3).

For each subpart, select whether it is possible for Eve to answer the specified question with high
probability.

If you select “Eve can answer this,” write the values for IV ′
1 and IV ′

2 , and write a strategy for answering
the question.

A completely unrelated sample answer:

IV ′
1 = C ′

2 ⊕H1, and IV ′
2 = IV2.

Strategy: If IV ′
2 = C ′

3 and H2 = IV1, Eve answers yes. Else, no.

Midterm - Page 22 of 27



Q6.5 (5 points) Are Alice’s two messages identical? i.e. is it true that P1 = P ′
1, P2 = P ′

2, P3 = P ′
3?

Eve can answer this Eve cannot answer this

Solution: Clarification during exam: Q6.5-6.7: if you say Eve cannot answer this, you may
leave the box empty. (8:30pm)

Many students wrote: IV ′
1 = IV1 and IV ′

2 = IV2 but the following explanation
works too.

IV ′
1 = IV1 ⊕ IV2 ⊕ IV ′

2 and IV ′
2 = IV1 ⊕ IV2 ⊕ IV ′

1

Strategy: If C ′
i = Ci∀i Eve answers yes, else No.

In order to see if the two messages are equal the consolidated IV’s must be the same
and equal IV1 ⊕ IV2, therefore IV ′

1 ⊕ IV ′
2 = IV1 ⊕ IV2.

Q6.6 (5 points) Do the first two blocks of the second message match the second and third blocks of the
first message? i.e. is it true that P ′

1 = P2 and P ′
2 = P3?

Eve can answer this Eve cannot answer this

Solution: Many students wrote: IV ′
1 = H1 and IV ′

2 = C2 but the following explanation
works too.

IV ′
1 = P1 ⊕H1 ⊕ IV ′

2 and IV ′
2 = P1 ⊕H1 ⊕ IV ′

1

Strategy: If C ′
1 = C2 and C ′

2 = C3, Eve answers yes, else No.

Note that in AES-OHP mode, Pi ⊕ Hi is treated as the IV value past block 1. There-
fore if we set IV ′

1 ⊕ IV ′
2 = P1 ⊕H1, we are passing in equivalent IVs into P ′

1 and P2 so we
can see if these blocks and onwards are equal.

Q6.7 (5 points) Assuming the first blocks of both messages are different and Eve knows this—are the
last blocks of both messages the same? i.e. is it true that P3 = P ′

3?

Eve can answer this Eve cannot answer this

Solution: Similar to AES-CBC mode, in cases of IV reuse, the ciphertexts blocks will appear
the same for equal plaintext blocks until the first difference between plaintext blocks, after
which ciphertexts blockwill appear completely different as the values XOR’dwith the plaintexts
have changed. So here if P1 ̸= P ′

1, then the following ciphertext blocks are uncomparable
regardless of whether they are equal.

Midterm - Page 23 of 27



Q7 3-Way Diffie-Hellman (17 points)
Alice, Bob, and Charlie are interested in what it would mean to do a 3-way Diffie-Hellman handshake.
They decide on the following procedure.

1. Agree on a large prime p, and generator g.
2. Alice, Bob, and Charlie randomly choose private keys a, b, c (mod p).
3. They publish ga (mod p), gb (mod p), gc (mod p) respectively.
4. Using the information from step 3, they publish .

After steps 1-4 are completed, there is a shared key with the following security property: Alice, Bob, and
Charlie all know the value of the shared key, but an eavesdropper with access to all communications
cannot feasibly determine the shared key.

Q7.1 (2 points) What should the shared key be in this scheme?

Solution: The shared key should be gabc (mod p).

To understand our current scheme, first recall “normal” Diffie-Hellman. Alice and Bob want to
agree on a key. They do so by choosing secret values a and b, then publishing ga and gb. Then
they can derive a shared key gab: for example Alice will derive gab by calculating (gb)a.

The idea behind the current scheme is for Alice, Bob, and Charlie to first publish ga, gb, and gc
(step 2). After this, Alice or Bob can publish gab, Bob or Charlie can publish gbc, and Charlie or
Alice can publish gca. At this point, all three parties are able to derive gabc using the published
values and their own secret key.

Q7.2 (3 points) What should go in the blank for step 4? (Hint: it should be three values.)

Solution: They should publish gab, gbc, gca (mod p). (There is more than one way in which
this can be done, see solution to part 1. Students don’t need to specify which way, i.e. who
publishes which one.)

Q7.3 (3 points) Explain how Alice derives the shared key using a and the published values. Write a
clear equation and/or sentence.

Solution: She takes the published value gbc and takes it to the ath power: (gbc)a = gabc.

Midterm - Page 24 of 27



Suppose we are given a prime p and generator g. The Diffie-Hellman problem asks:

Given ga (mod p) and gb (mod p) for randomly generated a, b, what is the value of gab (mod p)?

Q7.4 (1 point) Suppose that Mallory is an attacker who can solve the Diffie-Hellman problem. Is the
current scheme used by Alice, Bob, and Charlie necessarily insecure against Mallory?

Yes No

Solution: It is insecure because if Mallory eavesdrops on the communications and learns the
value of ga and gbc, solving the Diffie-Hellman problem, she can obtain ga·bc = gabc.

Q7.5 (1 point) Suppose we’re given a black box that solves the discrete log problem. Can we use this to
solve the Diffie-Hellman problem?

Yes No Don’t know

Solution: Consider the Diffie-Hellman problem: we are given ga, gb. To find gab, first use
discrete log solver to find a′ such that ga = ga

′ , then take (gb)a′ = (ga
′
)b = (ga)b = gab.

Q7.6 (1 point) Mallory is a man-in-the-middle who is able to modify messages before they are published.
Mallory has read all messages but has not modified any messages before step 4 of the handshake.

Can Mallory force everyone to derive a secret key that she knows? (Note: different people may
derive different keys.)

Yes No

Solution: Mallory simply needs to replace gab, gbc, gca with gx, gy , gz for values x, y, z that
she chooses. Alice will then derive the secret key (gx)a = (ga)x, which Mallory also knows.
This is similarly the case for Bob and Charlie.

Midterm - Page 25 of 27



Q7.7 (1 point) Suppose now that we only know a and gab (mod p). Assume GCD(a, p− 1) = 1.

Is it computationally feasible to compute gb (mod p) with the information given?

Yes

No

Depends on whether the discrete log problem is computationally feasible.

Solution: Q7.7: The public values (p and g) are still known. (8:31pm)

First find c such that ac = 1 (mod p− 1). (For example, use Euclidean algorithm.) Then we
can calculate (gab)c = (gac)b = gb.

Q7.8 (3 points) How does Diffie-Hellman provide forward secrecy? (Answer in 10 words or fewer.)

Solution: One can discard private keys after the handshake, so a future attacker will not
discover their value by looking at records.

Q7.9 (2 points) Describe a drawback of asymmetric encryption. (The staff answer is one word.)

Solution: Slow

Midterm - Page 26 of 27



Post-Exam Activity
Nothing on this page will affect your grade.

Evanbot needs help putting on the fireworks show! Draw in your own fireworks below:

Comment Box
Congratulations for making it to the end of the exam! Feel free to leave any thoughts, comments, feedback,
or doodles here:

Midterm - Page 27 of 27


