
CS161 FinalSummer 2025

Name:

Student ID:

This exam is 110 minutes long. There are 11
questions of varying credit. (100 points total)

Question: 1 2 3 4 5 6 7 8 9 10 11 Total
Points: 0 9 14 11 10 11 5 14 5 12 9 100

For questions with circular bubbles, you may
select only one choice.

Unselected option (Completely unfilled)

Don’t do this (it will be graded as incorrect)

Only one selected option (completely filled)

For questions with square checkboxes, you may
select one or more choices.

You can select

multiple squares (completely filled).

(Don’t do this)

Anything you write outside the answer boxes or
you cross out will not be graded. If you write
multiple answers, your answer is ambiguous, or the
bubble/checkbox is not entirely filled in, we may
grade the worst interpretation.

Pre-Exam Activity (0 points):

Instead of attending their final, EvanBot has chosen
to sleep in. What is bot dreaming about?

Q1 Honor Code 📜 (0 points)

I understand that I may not collaborate with anyone else on this exam, or cheat in any
way. I am aware of the Berkeley Campus Code of Student Conduct and acknowledge that
academic misconduct will be reported to the Center for Student Conduct and may further
result in, at minimum, negative points on the exam.

Read the honor code above and sign your name:

Page 1 of 22

This content is protected and may not be shared, uploaded, or distributed.

Q2 Potpourri 🍲 (9 points)

Each true/false is worth 0.5 points.

Q2.1 EvanBot protects their network by deploying a firewall, a NIDS, and a HIDS.

True or False: The relevant security principle is Defense‐in‐Depth.

True False

Q2.2 True or False: In C, if uint8_t x = 255 and we run x += 1, then x is now 256.

True False

Q2.3 True or False: A programming language that enforces type checks (e.g. strings cannot be assigned
to ints) is guaranteed to be memory-safe.

True False

Q2.4 True or False: In x86, the call instruction pushes the return address onto the stack and transfers
control to the callee.

True False

Q2.5 True or False: In x86, when executing a push instruction, the CPU increments ESP by 4 and writes
the value to the stack.

True False

Q2.6 True or False: Non‐executable pages prevents attackers from overwriting function pointers.

True False

Q2.7 True or False: 𝖤𝖢𝖡 mode encryption is IND-CPA secure for single-block messages.

True False

Q2.8 True or False: A successful 𝖧𝖬𝖠𝖢 verification alone is sufficient to establish both the integrity
and the confidentiality of a file.

True False

Q2.9 True or False: A fast cryptographic hash function like SHA-256 alone is sufficient for securely
storing passwords.

True False

Q2.10 True or False: Setting HttpOnly=True on a cookie prevents it from being sent in CSRF attacks.

True False

Q2.11 True or False: CSRF tokens reliably mitigate CSRF on state-changing POST requests.

True False

Final (Question 2 continues…) Page 2 of 22 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued…)

Q2.12 True or False: Setting Secure=True on a cookie prevents it from ever being sent over HTTPS.

True False

Q2.13 True or False: Parametrized SQL will always prevent an SQL injection attack from succeeding.

True False

Q2.14 True or False: HTTP traffic runs over TLS, whereas HTTPS traffic runs directly over TCP.

True False

Q2.15 True or False: UDP uses sequence numbers to ensure correct packet ordering.

True False

Q2.16 True or False: TCP’s three-way handshake provides built-in authentication of the communicating
peers.

True False

Q2.17 True or False: SYN cookies mitigate TCP SYN flooding attacks.

True False

Q2.18 True or False: DNS over HTTPS ensures that the recursive resolver can never modify queries.

True False

Q2.19 (0 points) True or False: EvanBot is a real bot?

True False

Final Page 3 of 22 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

Q3 Memory Safety: Elementary, my dear Watson 🇬🇧 (14 points)

Consider the following vulnerable C code:

1 void sherlock() {
2 char buf[16];
3 int shell_ptr = 0xdeadbeef;
4 char user_input[4];
5 fgets(user_input, 4, stdin);
6
7 buf[16] -= user_input[2];
8 }
9

10 void watson(){
11 sherlock();
12 }
13
14 int main() {
15 watson();
16 return 0;
17 }

Stack at Line 4

RIP of main

SFP of main

RIP of watson

SFP of watson

(1)

(2)

(3)

(4)

user_input

Assumptions:
• The goal is to execute shellcode located at address 0xdeadbeef.
• We run GDB once and find that the RIP of sherlock is at address 0xffffdc80.
• All memory safety mitigations are disabled.

Q3.1 (1 point) What values go in blanks (1) through (4) in the stack diagram above?

(1) RIP of sherlock (2) SFP of sherlock (3) shell_ptr (4) buf

(1) shell_ptr (2) RIP of sherlock (3) SFP of sherlock (4) buf

(1) RIP of sherlock (2) SFP of sherlock (3) buf (4) shell_ptr

Q3.2 (1 point) What type of vulnerability is present in this code?

Off-by-one Signed/unsigned

Format string vulnerability ret2ret

Q3.3 (2 points) What is the value (not the address) of the SFP of sherlock?

0xffffdc60 0xffffdc74 0xffffdc84

0xffffdc70 0xffffdc80 0xffffdc90

Final (Question 3 continues…) Page 4 of 22 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 3 continued…)

Q3.4 (4 points) Provide an input to fgets on Line 5 that would cause the program to execute shellcode.

If a part of the input can be any non-zero value, use 'A' * n to represent n bytes of garbage.

Q3.5 (2 points) Which memory safety defenses would cause the correct exploit (without modifications)
to fail? Consider each choice independently.

Note: For the PACs option only, assume the system is 64-bit (the exploit remains unchanged).
Note: Assume the shellcode is in the code section of memory.

Stack canaries Pointer authentication codes (PACs)

Non-executable pages None of the above

Q3.6 (3 points) Which values of the SFP of sherlock would cause the correct exploit (without modifi-
cations) to fail? Select all that apply.

0xffffdc70 0xffffdc40 0xffffdc10

0xffffdc60 0xffffdc30 0xffffdc00

0xffffdc50 0xffffdc20 None of the above

Q3.7 (1 point) Would the correct exploit (without modifications) fail if ASLR is enabled?

Always Sometimes Never

Final Page 5 of 22 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

Q4 Memory Safety: Chained Together 🔗 (11 points)

Consider the following vulnerable C code:

1 void getting_over_it() {
2 char mountain[44];
3 fread(mountain, 44, 1, stdin);
4
5 int tether = ;
6 char* jump_queen = &mountain[4];
7 char* jump_king = &mountain[0];
8
9 int idx = 3;

10 while (idx > 0) {
11 jump_queen = jump_king + tether;
12 jump_king = jump_queen + tether;
13 idx -= 1;
14 }
15
16 memcpy(jump_king, jump_queen, 4);
17 }

Q4.2

Stack at Line 16

RIP getting_over_it

SFP getting_over_it

mountain

(1)

(2)

(3)

idx

Assumptions:
• The goal is to execute shellcode located at address 0xdeadbeef.
• We run GDB once and find that the address of mountain on the stack is 0xffffde50.
• All memory safety mitigations are disabled.

Q4.1 (1 point) What values go in blanks (1) through (3) in the stack diagram above?

(1) tether (2) jump_queen (3) jump_king

(1) jump_king (2) jump_queen (3) tether

(1) jump_queen (2) tether (3) jump_king

In the next two subparts, provide inputs that would cause shellcode to execute.

Q4.2 (2 points) What value should be assigned to tether (in the blank on Line 5)?

1 2 4 6 8 12

Q4.3 (4 points) Provide an input to the fread on Line 3.

If a part of the input can be any non-zero value, use 'A' * n to represent n bytes of garbage.

Final (Question 4 continues…) Page 6 of 22 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 4 continued…)

Q4.4 (2 points) Which modifications would cause the correct exploit (without modifications) to fail?
Consider each choice independently.

Line 5: idx = 3 → idx = 2

Line 6: char* jump_queen = &mountain[4] → char* jump_queen = &mountain[8]

Line 16: memcpy(jump_king, jump_queen, 4) → memcpy(jump_king, jump_queen, 8)

Line 16: memcpy(jump_king, jump_queen, 4) → memcpy(jump_queen, jump_king, 4)

None of the above

Q4.5 (1 point) Would the correct exploit (without modifications) fail if we changed Line 3 from
fread(mountain, 44, 1, stdin) to fgets(mountain, 44, stdin)?

Yes, because fgets only allows you to write 43 non-null bytes into mountain.

Yes, because fgets stops reading when it reads a null terminator.

No, because our exploit does not include null terminators.

No, because there are no stack canaries to detect tampering.

Q4.6 (1 point) Would the correct exploit (without modifications) fail if stack canaries are enabled?

Yes, because the stack canary is overwritten, causing the program to crash.

Yes, because the stack canary changes the number of bytes between mountain and the RIP.

No, because the stack canary is never modified.

No, because stack canary is overwritten but returned to its original value by the exploit.

Final Page 7 of 22 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

Q5 Cryptography: Fake It Until You MAC It ⏰ (10 points)

Consider the 𝖢𝖡𝖢-𝖬𝖠𝖢 scheme, which takes an input message 𝑀 = (𝑀1, 𝑀2, …, 𝑀𝑛) and key 𝐾 , and
outputs a tag 𝑡. The same key is used for all 𝖢𝖡𝖢-𝖬𝖠𝖢 computations in this question.

𝑀1

⨁

AES Encryption𝐾

𝐶1

𝑀2

⨁

AES Encryption𝐾

𝐶2

…

𝑀𝑛

⨁

AES Encryption

𝑡

𝐾

For the entire question, you may use mathematical operators, including ⊕, in the boxes.

Clarification During Exam: Typo in diagram, M1 is not XORed with anything.

Q5.1 (1 point) In 𝖢𝖡𝖢-𝖬𝖠𝖢, what is the value of 𝐶2 for a 3-block message (𝑀1, 𝑀2, 𝑀3)?

𝐶2 = 𝐸𝐾(𝑀2) 𝐶2 = 𝐶1 ⊕ 𝑀2 𝐶2 = 𝐸𝐾(𝑀1 ⊕ 𝑀2)

𝐶2 = 𝐸𝐾(𝐶1 ⊕ 𝑀2) 𝐶2 = 𝐸𝐾(𝐶1 ⊕ 𝑀3) 𝐶2 = 𝐶1 ⊕ 𝐸𝐾(𝑀2)

Q5.2 (4 points) You know that message 𝑀 = (𝑀1, 𝑀2) has tag 𝑡, and message 𝑀 ′ = (𝑀 ′
1) has tag 𝑡′.

You do not know 𝐾 .

Construct a three-block message 𝑀new with the same tag as 𝑀 (i.e. with the tag 𝑡).

Your answer can include 𝑀1, 𝑀2, 𝑀 ′
1, 𝑡, 𝑡′.

𝑀new = (, ,)
First block Second block Third block

Final (Question 5 continues…) Page 8 of 22 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 5 continued…)

Q5.3 (5 points) You know that message 𝑀 = (𝑀1, 𝑀2, 𝑀3) has tag 𝑡, and message 𝑀 ′ = (𝑀 ′
1, 𝑀 ′

2, 𝑀 ′
3)

has tag 𝑡′. You do not know 𝐾 .

You want to forge a message 𝑀new with the same tag as 𝑀 (i.e. with the tag 𝑡).

To help with your forgery, you can query for the MAC of two messages before constructing 𝑀new.
In each blank, you may use: 𝑀1, 𝑀2, 𝑀3, 𝑀 ′

1, 𝑀 ′
2, 𝑀 ′

3, 𝑡, 𝑡′.

Hint: In our solution, both messages are one block each.

What is the first message you query for?

The MAC of the message in the box above is 𝑡𝑎.

What is the second message you query for?

The MAC of the message in the box above is 𝑡𝑏.

Now, construct a three-block message 𝑀new with the same tag as 𝑀 (i.e. with the tag 𝑡):
• Your answer can include 𝑀1, 𝑀2, 𝑀3, 𝑀 ′

1, 𝑀 ′
2, 𝑀 ′

3, 𝑡, 𝑡′, 𝑡𝑎, 𝑡𝑏.
• Your answer cannot be exactly (𝑀1, 𝑀2, 𝑀3), (𝑀 ′

1, 𝑀 ′
2, 𝑀 ′

3), or the queries in the boxes above.

𝑀new = (, ,)
First block Second block Third block

Final Page 9 of 22 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

Q6 Cryptogrpahpy: Obliviously Garbage 🗑 (11 points)

Alice has two messages: 𝑚0 and 𝑚1. Bob wants to retrieve one of the two messages, without Alice finding
out which message Bob chose to retrieve.

To do this, Alice and Bob follow the blind retrival protocol below:

Setup:
1. Alice generates an RSA key pair: public key (𝑁, 𝑒) and private key 𝑑. Alice sends (𝑁, 𝑒) to Bob.
2. Alice generates two random values 𝑟0 and 𝑟1 and sends them to Bob.
3. If Bob chooses 𝑚0, he will define 𝑟𝑏 = 𝑟0. Otherwise, he will define 𝑟𝑏 = 𝑟1.

Protocol Steps:

4. Bob generates a random value 𝑘.

5. Bob computes 𝑣 ≡ 𝑟𝑏 + 𝑘𝑒 mod 𝑁 and sends this value 𝑣 to Alice.

6. Alice computes 𝑘0 ≡
Q6.1

 and 𝑘1 ≡
Q6.2

.

7. Alice sends 𝑚′
0 ≡ 𝑚0 + 𝑘0 mod 𝑁 and 𝑚′

1 ≡ 𝑚1 + 𝑘1 mod 𝑁 to Bob.

8. Bob recovers his desired message by computing 𝑚𝑏 ≡
Q6.3

.

Q6.1 (1 point) Provide the value for 𝑘0 in step 6.

𝑘0 ≡ (𝑣 + 𝑟0)
𝑑 mod 𝑁 𝑘0 ≡ 𝑣𝑑 − 𝑟0 mod 𝑁

𝑘0 ≡ (𝑣 − 𝑟0)
𝑑 mod 𝑁 𝑘0 ≡ (𝑣 ⋅ 𝑟0)

𝑑 mod 𝑁

Q6.2 (1 point) Provide the value for 𝑘1 in step 6.

𝑘1 ≡ (𝑣 + 𝑟1)
𝑑 mod 𝑁 𝑘1 ≡ 𝑣𝑑 − 𝑟1 mod 𝑁

𝑘1 ≡ (𝑣 − 𝑟1)
𝑑 mod 𝑁 𝑘1 ≡ (𝑣 ⋅ 𝑟1)

𝑑 mod 𝑁

Q6.3 (1 point) Provide the value for 𝑚𝑏 in step 8.

𝑚𝑏 ≡ 𝑚𝑏′ + 𝑘 mod 𝑁 𝑚𝑏 ≡ 𝑚𝑏′ ⋅ 𝑘−1 mod 𝑁

𝑚𝑏 ≡ 𝑚𝑏′ − 𝑘 mod 𝑁 𝑚𝑏 ≡ 𝑚𝑏′ ⊕ 𝑘

Q6.4 (1 point) Why can Alice not determine which message Bob chose to retrieve? Select the best answer.

Because the value 𝑣 = 𝑟𝑏 + 𝑘𝑒 mod 𝑁 is masked by the term 𝑘𝑒.

Because 𝑟0, 𝑟1 are both randomly generated and therefore evenly distributed mod 𝑁 .

Because Bob’s private RSA exponent 𝑑 remains secret.

Because Bob sends 𝑣 over an encrypted channel, so Alice cannot read it directly.

Final (Question 6 continues…) Page 10 of 22 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 6 continued…)

Subparts Q6.5 to Q6.8 are independent of earlier subparts.

Consider this protocol:
• Alice and Bob each have a secret bit (Alice has 𝑎, Bob has 𝑏).
• They want to compute the bitwise AND of their secret bits, such that both parties learn 𝑎 ∧ 𝑏.
• Alice and Bob should not learn each other’s secret bit (except what can be inferred: see note below).
• Note: Sometimes you can infer the other person’s bit from the 𝑎 ∧ 𝑏 output, and it’s okay if the protocol

leaks this information. For example, if Bob picks 𝑏 = 1 and sees 𝑎 ∧ 𝑏 = 0, he can infer that 𝑎 = 0.
However, if Bob picks 𝑏 = 0 and sees 𝑎 ∧ 𝑏 = 0, he cannot infer 𝑎 (could be 0 or 1).

Protocol:
1. Alice generates four random symmetric keys: 𝐾𝑎=0, 𝐾𝑎=1, 𝐾𝑏=0, 𝐾𝑏=1.
2. Alice uses the symmetric keys to compute four ciphertexts:

𝖤𝗇𝖼(𝐾𝑎=0, 𝖤𝗇𝖼(𝐾𝑏=0, 0))
𝖤𝗇𝖼(𝐾𝑎=0, 𝖤𝗇𝖼(𝐾𝑏=1, 0))
𝖤𝗇𝖼(𝐾𝑎=1, 𝖤𝗇𝖼(𝐾𝑏=0, 0))
𝖤𝗇𝖼(𝐾𝑎=1, 𝖤𝗇𝖼(𝐾𝑏=1, 1))

3. Alice sends all four ciphertexts to Bob.
4. Let 𝐾𝑎 be 𝐾𝑎=0 or 𝐾𝑎=1, depending on which bit Alice chose. Alice sends 𝐾𝑎 to Bob.
5. Let 𝐾𝑏 be 𝐾𝑏=0 or 𝐾𝑏=1, depending on which bit Bob chose. Bob retrieves 𝐾𝑏 from Alice.
6. For each of the four ciphertexts, Bob evaluates

Q6.5
.

Three of the ciphertexts will decrypt to garbage. One of the ciphertexts will decrypt to either 0 or 1.
The desired output 𝑎 ∧ 𝑏 is the non-garbage value.

Q6.5 (1 point) Fill in the blank for step 6 above.

Your answer may include 𝖤𝗇𝖼, 𝖣𝖾𝖼, 𝐾𝑎, 𝐾𝑏, and 𝐶 (one of the four ciphertexts Alice sends).

Q6.6 (1 point) In step 3, should Alice send the four ciphertexts in a random order?

Yes, to prevent Bob from using the ciphertext order to always deduce Alice’s bit 𝑎.

Yes, to ensure each ciphertext uses a different encryption key.

No, because Bob can already decrypt the non-garbage ciphertext.

No, because encryption alone prevents Bob from always deducing Alice’s bit 𝑎.

Final (Question 6 continues…) Page 11 of 22 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 6 continued…)

Protocol (reprinted for your convenience):
1. Alice generates four random symmetric keys: 𝐾𝑎=0, 𝐾𝑎=1, 𝐾𝑏=0, 𝐾𝑏=1.
2. Alice uses the symmetric keys to compute four ciphertexts:

𝖤𝗇𝖼(𝐾𝑎=0, 𝖤𝗇𝖼(𝐾𝑏=0, 0))
𝖤𝗇𝖼(𝐾𝑎=0, 𝖤𝗇𝖼(𝐾𝑏=1, 0))
𝖤𝗇𝖼(𝐾𝑎=1, 𝖤𝗇𝖼(𝐾𝑏=0, 0))
𝖤𝗇𝖼(𝐾𝑎=1, 𝖤𝗇𝖼(𝐾𝑏=1, 1))

3. Alice sends all four ciphertexts to Bob.
4. Let 𝐾𝑎 be 𝐾𝑎=0 or 𝐾𝑎=1, depending on which bit Alice chose. Alice sends 𝐾𝑎 to Bob.
5. Let 𝐾𝑏 be 𝐾𝑏=0 or 𝐾𝑏=1, depending on which bit Bob chose. Bob retrieves 𝐾𝑏 from Alice.
6. For each of the four ciphertexts, Bob evaluates

Q6.5
.

Three of the ciphertexts will decrypt to garbage. One of the ciphertexts will decrypt to either 0 or 1.
The desired output 𝑎 ∧ 𝑏 is the non-garbage value.
Q6.7 (1 point) Suppose that in Step 5, Bob retrieves 𝐾𝑏 by telling Alice: “I want 𝐾𝑏=0” or “I want 𝐾𝑏=1”.

Why is this a bad idea?

Because that would reveal Bob’s bit 𝑏 to Alice.

Because Bob would not have the key required to decrypt the ciphertexts.

Because 𝐾𝑏=0 and 𝐾𝑏=1 are both generated as a function of Bob’s bit 𝑏.

Because that would reveal Alice’s bit 𝑎 to Bob.

Q6.8 (2 points) Suppose that in Step 5, Bob retrieves 𝐾𝑏 by asking for both keys. This is a bad idea because
Bob can now reveal Alice’s bit 𝑎.

Which expression, when evaluated on each ciphertext 𝐶 , will reveal Alice’s bit 𝑎?

Note: The version of this subpart that appeared on the exam erroneously flipped the order of decryption
keys. This was clarified, and has been corrected for this version of the exam.

𝖣𝖾𝖼(𝐾𝑏, 𝖣𝖾𝖼(𝐾𝑎=0, 𝐶)) 𝖣𝖾𝖼(𝐾𝑏=0, 𝖣𝖾𝖼(𝐾𝑎, 𝐶))

𝖣𝖾𝖼(𝐾𝑏, 𝖣𝖾𝖼(𝐾𝑎=1, 𝐶)) 𝖣𝖾𝖼(𝐾𝑏=1, 𝖣𝖾𝖼(𝐾𝑎, 𝐶))

Q6.9 (2 points) Suppose that in Step 5, Bob uses the blind retrieval protocol (from earlier in this question)
to retrieve either 𝐾𝑏=0 or 𝐾𝑏=1 from Alice, without Alice knowing which one Bob chose to retrieve.

After the blind retrieval in step 5, which values are known to Bob? Select all that apply.

𝐾𝑎, the key 𝐾𝑎=0 or 𝐾𝑎=1 corresponding to the bit Alice chose.

𝐾𝑏, the key 𝐾𝑏=0 or 𝐾𝑏=1 corresponding to the bit Bob chose.

The key 𝐾𝑎=0 or 𝐾𝑎=1 corresponding to the bit Alice did not choose.

The key 𝐾𝑏=0 or 𝐾𝑏=1 corresponding to the bit Bob did not choose.

Alice’s bit 𝑎.

None of the above

Final Page 12 of 22 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

Q7 Web Security: Many links lead to EvanRome 🏛🏺 (5 points)

For each subpart, select the URL with the same origin as the given URL, according to Same Origin Policy.

Q7.1 (1 point) https://www.cs161.org:443/policies

https://su25.cs161.org https://sp25.cs161.org:161

http://evil.mallory.com None of the above

Q7.2 (1 point) http://sp25.cs161.org:161/policies

https://su25.cs161.org https://sp25.cs161.org:161

http://evil.mallory.com None of the above

Q7.3 (1 point) https://sp25.cs161.org:161/policies

https://su25.cs161.org https://sp25.cs161.org:161

http://evil.mallory.com None of the above

Q7.4 (1 point) http://evil.mallory.org:80/policies

https://su25.cs161.org https://sp25.cs161.org:161

http://evil.mallory.com None of the above

Q7.5 (1 point) http://su25.cs161.org:80/attack

https://su25.cs161.org https://sp25.cs161.org:161

http://evil.mallory.com None of the above

Final Page 13 of 22 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

Q8 Web Security: Mallory-PT 🤖 (14 points)

A new trend is sweeping the nation — everyone is chatting away using ClosedAI’s new product: GPTChat!
When a user logs in at gpt.chat, they can communicate with a chat bot.

Assumptions:
• gpt.chat uses session-based authentication. Session tokens are stored as cookies with:
Name=token; Domain=gpt.chat; Path=/; HttpOnly=False; Secure=True.

• gpt.chat hosts many chat bots. Users can select which bot to chat with, by setting a bot cookie with:
Name=bot; Domain=gpt.chat; Path=/; HTTPOnly=False; Secure=True.
The Value is the URL of the selected bot, e.g. Value=gpt.chat/evan or Value=gpt.chat/coda.

Users logged into gpt.chat can access these paths:

Path Method Description
/chat GET Returns a chat HTML page containing:

• The CHAT_ID for this chat.
• A space where messages are displayed unsanitized.
• A chat bar. When a user presses Enter a POST request is made

to /prompt, and the bot’s response is added to the space.
/prompt POST Forwards the body of the POST request to the URL in the bot

cookie. Returns the response from that URL to the user as HTML.
/share?id=CHAT_ID GET Loads a read-only version of the chat with the given CHAT_ID.

If the CHAT_ID is invalid, loads this unsanitized HTML, replacing
CHAT_ID with the URL parameter: <p>CHAT_ID invalid.</p>

/list GET Returns a list of the user’s chats. Each entry has a CHAT_ID and a
link to the chat.

Mallory controls a server at mallory.com with these paths:

Path Method Description
/store GET/POST Mallory will record any data sent here.
/post POST Mallory can respond to the POST request with any data she wants.

JavaScript functions you can use in this question:
• get(url): Executes a GET request to the provided URL.
• post(url, body): Executes a POST request to the provided URL with the provided body.
• updateCookie(name, value): Sets the value of the cookie with name name to value.

Only works if JavaScript has access to the cookie in question. All other flags remain the same.

Final (Question 8 continues…) Page 14 of 22 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 8 continued…)

Q8.1 (1 point) Suppose mallory.com/chat returns JavaScript that makes a POST request to gpt.chat/
prompt, with some malicious message.

When a user logged into GPTChat visits mallory.com/chat, will the POST request succeed?

Yes, cookie policy considers the URL of the request, so the session cookie will be sent.

Yes, session cookies are attached to all HTTP requests.

No, cookie policy considers the origin of the request, so the session cookie will not be sent.

No, the Secure flag on the session cookie will prevent it from being attached.

Q8.2 (1 point) For this subpart, Mallory is an on-path attacker between a logged-in user and GPTChat.

The user opens each of these URLs. Select all URLs that will leak their session token to Mallory.

https://gpt.chat https://fake.gpt.chat

http://gpt.chat http://fake.gpt.chat

https://mallory.com/store None of the above

http://mallory.com/store

Q8.3 (4 points) Construct a URL that, when clicked, sends all of a user’s CHAT_IDs to Mallory.

Q8.4 (3 points) /prompt does not check the URL in the bot cookie before forwarding to that URL.

Mallory exploits this by designing an attack:
1. She writes some JavaScript: <script>______________</script>.
2. The user runs this script with GPTChat’s origin.
3. The user opens /chat.
4. Now, Mallory can add responses to the /chat page as if she was the bot.

What goes in the blank to achieve Mallory’s attack?

Final (Question 8 continues…) Page 15 of 22 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 8 continued…)

Q8.5 (2 points) Select all actions Mallory can do after executing the attack in Q8.4.

Read messages that the user types in the chat bar.

Add any HTML of Mallory’s choosing on the /list page.

Make the user run malicious JavaScript with the origin of gpt.chat.

Make the user run malicious JavaScript with the origin of bank.com (a secure site).

Learn information about any other tab that the user has open.

None of the above

Q8.6 (2 points) Mallory uses reflected XSS to make the user run her script in Q8.4.

Select all defenses that would prevent Mallory’s attack in Q8.4.

Origin/Referer checking Prepared statements

Input sanitization Setting HttpOnly=True for all cookies

CSRF tokens Using the SameSite flag

Content security policy None of the above

Q8.7 (1 point) Mallory now designs an attack to cause Alice to run malicious JavaScript:
1. Mallory runs the attack in Q8.4 on herself.
2. Mallory sends a response with malicious JavaScript to herself.
3. Mallory copies the /share?id=CHAT_ID link for the chat with malicious JavaScript.
4. Mallory sends the link to Alice, and Alice clicks the link.

Which type of attack is executed on Alice?

CSRF attack Stored XSS Buffer overflow

Reflected XSS SQL injection None of the above

Final Page 16 of 22 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

Q9 Networking: Hodgepodge 🫟 (5 points)

The WPA2-PSK scheme from lecture is shown below. Each subpart is independent.

} Client and Access Point derive PSK

} Client and Access Point derive PTK
from PSK and MAC addresses

Authentication Request

ANONCE

SNONCE

MIC

MIC

GTK

ACK

Client Access Point

Clarification During Exam: In the diagram, the PTK should be derived from the PSK, MAC addresses, and
Nonces.
Q9.1 (2 points) An attacker records an entire session (WPA handshake and subsequent messages)

between a client and access point. Later, the attacker learns the network’s PSK. Select all true
statements.

The attacker can decrypt the messages in the recorded session.

The attacker can derive the PTK used in the recorded session.

The attacker can derive the GTK used in the recorded session.

The attacker can decrypt future recorded sessions between other clients and the access point.

None of the above
Q9.2 (1 point) What would happen if the client sent the same SNonce value in multiple handshakes with

the same access point?

A different PTK is derived in each handshake.

The same PTK is derived in each handshake.

A different PSK is derived in each handshake.

A different GTK is derived in each handshake.
Q9.3 (2 points) Suppose the Wi-Fi password is changed once per hour. Select all true statements.

Users joining at different hours will derive different PSKs.

Users joining at different hours will derive different PTKs.

Users joining at different hours will use different GTKs.

Every hour, existing users’ PTKs become invalid, and users must re-join the network.

None of the above

Final Page 17 of 22 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

Q10 Networking: TLSplit 🪓 (12 points)

ClientHello

ServerHello

𝖬𝖠𝖢(𝐼𝑆, Hellos)

𝖤𝗇𝖼(𝐶𝑆,𝑀 ‖ 𝖬𝖠𝖢(𝐼𝑆,𝑀))

𝖬𝖠𝖢(𝐼𝐵 , Hellos)

𝖤𝗇𝖼(𝐶𝐵 ,𝑀 ‖ 𝖬𝖠𝖢(𝐼𝐵 ,𝑀))

Client Server
Consider the modified TLS handshake shown in the diagram:

1. ClientHello: Client sends 𝑔𝑎 mod 𝑝 (ephemeral
Diffie-Hellman value) and 𝑅𝐵 (random nonce).

2. ServerHello: Server sends 𝑔𝑏 mod 𝑝 (ephemeral
Diffie-Hellman value) and 𝑅𝑆 (random nonce).

3. The Client and Server derive the symmetric keys (𝐼𝑆 , 𝐼𝐵,
𝑀𝑆 , 𝑀𝐵) using the premaster secret 𝑔𝑎𝑏 mod 𝑝 and the
random nonces 𝑅𝐵, and 𝑅𝑆 .

4. The Server sends the 𝖬𝖠𝖢 on both Hello messages.
5. The Server 𝖬𝖠𝖢s and encrypts a message and sends it to

the Client.
6. The Client sends the 𝖬𝖠𝖢s on the Hello messages.
7. The Client 𝖬𝖠𝖢s and encrypts a message and sends it to

the Server.

Note: The version of this question featured in the exam contained answer choices that referred to variables
from an older version of the question. This was clarified, and has been corrected for this version of the exam.

Q10.1 (1 point) True or False: This scheme ensures forward secrecy.

True False

Q10.2 (1 point) True or False: This scheme guarantees that the client is talking to the legitimate server.

True False

Suppose the Client and Server start a connection in the presence of Mallory. Mallory is a man-in-the-
middle attacker who wants to send messages to the client after the TLS handshake is completed.

Q10.3 (1 point) After the ClientHello has been recieved, Mallory replaces the ServerHello. What values
should Mallory send to the client?

𝑔𝑎 mod 𝑝 and 𝑅𝑚 𝑔𝑚 mod 𝑝 and 𝑅𝑚 𝑔𝑏 mod 𝑝 and 𝑅𝑚 𝑅𝑚

Q10.4 (2 points) After Q10.3, what values will the Client use to derive the symmetric keys in Step 3?

𝑎 𝑔𝑎 mod 𝑝 𝑅𝐵

𝑚 𝑔𝑚 mod 𝑝 𝑅𝑚

𝑏 𝑔𝑏 mod 𝑝 𝑅𝑆

Final (Question 10 continues…) Page 18 of 22 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 10 continued…)

Q10.5 (2 points) After Q10.3, what values will the Server use to derive the symmetric keys in Step 3?

𝑎 𝑔𝑎 mod 𝑝 𝑅𝐵

𝑚 𝑔𝑚 mod 𝑝 𝑅𝑚

𝑏 𝑔𝑏 mod 𝑝 𝑅𝑆

Q10.6 (2 points) After Q10.3, what values will Mallory use to derive the same symmetric keys as the
Client in Step 3?

𝑎 𝑔𝑎 mod 𝑝 𝑅𝐵

𝑚 𝑔𝑚 mod 𝑝 𝑅𝑚

𝑏 𝑔𝑏 mod 𝑝 𝑅𝑆

Q10.7 (1 point) After Step 4 of the TLS handshake is complete, what can Mallory do? Select all that apply.

Pretend to be the Server and send the message in Step 5 to the Client.

Pretend to be the Client and send the message in Step 7 to the Server.

None of the above

For Q10.8 and Q10.9, consider the standard TLS handshake from lecture (these subparts are independent
from the modified scheme above).

Q10.8 (1 point) The Client and Server complete a standard TLS handshake. If an attacker compromises all
routers between the Client and the Server, can they decrypt messages?

Yes, because the compromised routers can inspect and forward packets.

Yes, because the attacker can inject traffic to downgrade encryption and then decrypt.

No, because TLS is end-to-end secure.

No, because the underlying TCP session provides confidentiality.

Q10.9 (1 point) Suppose the Client and Server change the length of the random nonce from 256 to 128 bits
in the TLS handshake.

With this modification, what happens to the probability that a packet recorded from one connection
can be replayed in another connection?

The probability increases, and the resulting probability of success is non-negligible.

The probability increases, and the resulting probability of success is negligible.

The probability decreases, and the resulting probability of success is non-negligible.

The probability decreases, and the resulting probability of success is negligible.

Final Page 19 of 22 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

Q11 Networking: GooDNS 🫢 (9 points)

Consider this DNS hierarchy, where each box represents a name server:

. (root)

.com

cs161.orggood.com

.org

EvanBot has the following records cached:

Record 1: org. NS a.org-servers.net
Record 2: a.org-servers.net A 192.7.14.21
Record 3: com. NS a.com-servers.net
Record 4: a.com-servers.net A 192.6.16.161
Record 5: evil.com A 192.5.55.555

In Q11.1 to Q11.3, each subpart continues on from previous subparts, i.e. records received in one
subpart can be cached for later subparts.

Q11.1 (1 point) How many DNS requests does EvanBot need to make to learn the IP address of
www.cs161.org?

0 1 2 3

Q11.2 (1 point) Record 1 is expired and removed from the cache.

How many DNS requests does the EvanBot need to make to learn the IP address of www.cs161.org?

0 1 2 3

Q11.3 (1 point) How many DNS requests does EvanBot need to make to learn the IP address of
not.good.com?

0 1 2 3

Final (Question 11 continues…) Page 20 of 22 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 11 continued…)

The rest of the question is independent of earlier subparts.

Q11.4 (1 point) Which of these best describes why an attacker would use the Kaminsky attack, instead of
some other cache poisoning attack?

The attacker is on-path; the Kaminsky attack only works for on-path attackers.

Unlike other DNS attacks, the Kaminsky attack can poison a cache shared by many users.

The attacker is off-path; the Kaminsky attack guarantees that the attacker will guess correctly.

The attacker is off-path; the Kaminsky allows the attacker to make more guesses.

Q11.5 (2 points) Suppose the attacker can place HTML on a website that the victim will visit.

Which HTML snippets can help the attacker poison the cache for www.google.com (using the
Kaminsky attack)? Select all that apply.

None of the above

Q11.6 (1 point) When source port randomization is enabled, what is the approximate probability that an
off-path attacker successfully spoofs a DNS response?

1/216 1/232 1/264 1 0

Q11.7 (1 point) When executing a Kaminsky attack, what should be the source IP in the attacker’s spoofed
DNS response?

Attacker’s IP address Name server’s IP address

Resolver’s IP address The source IP field can be left blank.

Q11.8 (1 point) What is the primary reason DNSSEC does not provide confidentiality?

The trust anchor model used by DNSSEC is incompatible with encryption protocols.

Confidentiality would make the DNS query process too slow.

DNS data is considered public information.

Implementing encryption would require a new set of DNS record types, which is not feasible.

Final (Question 11 continues…) Page 21 of 22 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 11 continued…)

Post-Exam Activity: Bot’s Broken Ramp
Oh no! The ramp is broken! Draw in CS161 Course staff in order by height to hold up the ramp, so that
EvanBot can drive over safely.

Comment Box
Congratulations for making it to the end of the exam! Feel free to leave any final thoughts, comments,
feedback, or doodles here:

Final Page 22 of 22 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

	Honor Code 📜
	Potpourri 🍲
	Memory Safety: Elementary, my dear Watson 🇬🇧
	Memory Safety: Chained Together 🔗
	Cryptography: Fake It Until You MAC It ⏰
	Cryptogrpahpy: Obliviously Garbage 🗑️
	Web Security: Many links lead to EvanRome 🏛️🏺
	Web Security: Mallory-PT 🤖
	Networking: Hodgepodge 🫟
	Networking: TLSplit 🪓
	Networking: GooDNS 🫢
	Post-Exam Activity: Bot's Broken Ramp
	Comment Box

