
CS161 Introduction to
Computer Security MidtermSummer 2025

Name:

Student ID:

This exam is 110 minutes long. There are 7
questions of varying credit. (100 points total)

Question: 1 2 3 4 5 6 7 Total
Points: 0 14 23 17 18 18 10 100

For questions with circular bubbles, you may
select only one choice.

A Unselected option (Completely unfilled)

B Don’t do this (it will be graded as incorrect)

C Only one selected option (completely filled)

For questions with square checkboxes, you may
select one or more choices.

A You can select

B multiple squares (completely filled).

C (Don’t do this)

Anything you write outside the answer boxes or
you cross out will not be graded. If you write
multiple answers, your answer is ambiguous, or the
bubble/checkbox is not entirely filled in, we may
grade the worst interpretation.

Pre-Exam Activity (0 points):

EvanBot does not want to take their CS 161 Exam,
so they are hiding somewhere on campus! Can you
find them in time for the exam to start?

Artwork by Justin Yang (‘28)

Q1 Honor Code (0 points)

I understand that I may not collaborate with anyone else on this exam, or cheat in any
way. I am aware of the Berkeley Campus Code of Student Conduct and acknowledge that
academic misconduct will be reported to the Center for Student Conduct and may further
result in, at minimum, negative points on the exam.

Read the honor code above and sign your name:

Page 1 of 29

This content is protected and may not be shared, uploaded, or distributed.

Q2 Potpourri (14 points)

Each true/false is worth 1 point.

Q2.1 EvanBot purchases a $100,000 safe to protect a $100 necklace.

True or False: The relevant security principle is Security is Economics.

A True B False

Solution: Security is Economics says that the expected benefit of your defense should be
proportional to the expected cost of the attack.

This is relevant here since EvanBot is violating the principle by spending a disproportionate
amount of money on a safe to protect a relatively cheap necklace.

Q2.2 EvanBot installs lasers in their office to further protect their safe.

True or False: The relevant security principle is Defense in Depth.

A True B False

Solution: Defense in Depth argues that multiple types of defenses should be layered together
so an attacker would have to breach all the defenses to successfully attack a system.

Since EvanBot is adding lasers in addition to the safe, Bot is layering multiple defenses together.

Q2.3 EvanBot has no locks on their office, but they have cameras to detect intruders.

True or False: The relevant security principle is Least Privilege.

A True B False

Solution: Least Privilege has to do with ensuring that any one party should only have as much
privilege as it needs to play its intended role.

The presence of security cameras does nothing to limit specific parties’ privilege, and is instead
blanket security. As such, least privilege does not apply here.

Midterm (Question 2 continues…) Page 2 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

https://textbook.cs161.org/principles/principles.html#13-security-is-economics
https://textbook.cs161.org/principles/principles.html#15-defense-in-depth
https://textbook.cs161.org/principles/principles.html#16-least-privilege

(Question 2 continued…)

Q2.4 True or False: According to x86 calling convention, at the instant before the callee executes its
first instruction, which values have already been pushed onto the stack?

A The RIP and arguments of the callee function.

B The RIP, SFP, and arguments of the callee function.

C The RIP of the callee function.

D A pointer to the middle of the callee’s code.

Solution: Remember the first steps of calling convention:
1. Push arguments onto the stack (reverse order).
2. Push the old EIP onto the stack. This value becomes the RIP (Return Instruction Pointer).
3. Move EIP to the first instruction of the function.
4. …

Notice that in Step 3, we move the EIP to point at the first instruction of the callee. The instruction
after this moment (beginning with Step 4) will be the first instruction executed by the callee.

As such, we only have to consider what is pushed onto the stack in the first two steps:
• In Step 1, we add the arguments of the callee
• In Step 2, we add the RIP of the callee

Q2.5 True or False: When memory is allocated for a struct in the heap, the first variable defined in the
struct is stored at the lowest memory address.

A True B False

Solution: Recall C Memory Layout. Struct memory layout is identical between the stack and the
heap. Lower variables in the struct are always listed above higher variables.

Q2.6 True or False: In big-endian format, the byte 0xde of the 4-byte word 0xdeadbeef is stored at
the lowest memory address.

A True B False

Solution: In Big-Endian format, the most significant byte,which is the leftmost byte by conven-
tion, is stored at the lowest memory address.

The leftmost byte in 0xdeadbeef is 0xde, so this is stored at the lowest memory address on a
Big-Endian system.

Midterm (Question 2 continues…) Page 3 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

https://assets.cs161.org/proj1/cheatsheet.pdf
https://textbook.cs161.org/memory-safety/x86.html#23-c-memory-layout
https://textbook.cs161.org/memory-safety/x86.html#24-little-endian-words

(Question 2 continued…)

Q2.7 True or False: The RIP of a printf function is located at 0xffffdb0c. To process the first format
specifier in the format string, the printf function consumes the argument at 0xffffdb14.

A True B False

Solution: The function signature of printf is printf(char* format_str, ...args). The
function takes in a format string, and an arbitrary number of arguments to be processed in order
as format specifiers.

As such, the first argument that printf will process is the pointer to the format string itself.
This will result in a stack that looks like the following:

…
f1

format_str

RIP of printf
SFP of printf

Because of this, the format_str itself is located 4 bytes above the RIP of printf, and the first
argument that is processed as a format string is 8 bytes above the RIP at f1.

If the RIP of printf is 0xffffdb0c, then the first format specifier that will be consumed is at
0xffffdb0c + 8 = 0xffffdb14.

Q2.8 True or False: With pointer authentication codes enabled, overwriting only the least significant
byte of the RIP will cause the program to crash.

A True B False

Solution: The PAC is calculated as a function of the pointer, so if a part of the pointer is changed
without the PAC changing to compensate, the program will realize that an invalid pointer is
present and crash.

Q2.9 True or False: If you need high performance, 𝖢𝖳𝖱 mode is arguably better than 𝖢𝖡𝖢 mode,
because you can parallelize both encryption and decryption.

A True B False

Solution: CTR mode turns the block cipher into a stream cipher by encrypting counters
independently. Since each counter block is unrelated, both encryption and decryption can be
parallelized.

Midterm (Question 2 continues…) Page 4 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

https://textbook.cs161.org/memory-safety/vulnerabilities.html#33-format-string-vulnerabilities

(Question 2 continued…)

Q2.10 True or False: In 𝖢𝖳𝖱 mode, if Mallory flips a bit in the ciphertext, the corresponding bit in the
decrypted plaintext will also be flipped.

A True B False

Solution: CTR mode encrypts by XORing the plaintext with a keystream. If a bit in the ciphertext
is modified, the same bit in the decrypted plaintext will change. This makes CTR mode malleable,
meaning modifications

Q2.11 True or False: 𝖧𝖬𝖠𝖢 can be employed to create a secure, rollback-resistant PRNG.

A True B False

Solution: True. This is the HMAC-DRBG construction from lecture.

Q2.12 True or False: 𝖭𝖬𝖠𝖢 requires exactly one symmetric key alongside the message as input.

A True B False

Solution: False. Two keys are needed.

Q2.13 True or False: Encrypt-then-MAC provides the same security properties as MAC-then-Encrypt.

A True B False

Solution: MAC-then-Encrypt schemes can leak information through length extension or
padding oracle attacks, etc.

Q2.14 True or False: A cryptographic hash function maps fixed-length inputs to arbitrary-length
outputs.

A True B False

Solution: This is false. A cryptographic hash function maps arbitrary-length input to a fixed-
length output. For example, SHA-256 produces a 256-bit output regardless of input size.

Midterm Page 5 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

Q3 Memory Safety: Heap Calm and Carry On 🇬🇧 (23 points)

Consider the following vulnerable C code:

1 typedef struct {
2 char tea[12];
3 char jam[4];
4 } crumpets;
5
6 typedef struct {
7 char milk[16];
8 } biscuit;
9

10 void UnionJack() {
11 int i = 0;
12 crumpets *c = malloc(sizeof(crumpets));
13 biscuit *b = malloc(sizeof(biscuit));
14 int max = 0x00000001;
15 void *target;
16 char buf[16];
17
18 while (i < max) {
19 if (i == 0) {
20 fgets(buf, 22, stdin);
21 memcpy(c->tea, buf, 16);
22 } else {
23 fread(buf, 16, 1, stdin);
24 memcpy(b->milk, buf, 16);
25 }
26 i++;
27 }
28 memcpy(target, &c, 4);
29 }

Stack at Line 16

RIP of UnionJack

SFP of UnionJack

i

c

(1)

max

(2)

(3)

Heap at Line 16

(4)

(5)

(6)

Assumptions:
• All memory safety defenses are disabled.
• malloc allocates memory starting at the lowest possible address with enough free space.
• malloc always allocates the exact amount of memory required by its input, with no metadata.
• No other process modifies the heap before or during this program’s execution.
• The heap starts at address 0x0804b000 and grows upwards.
• You run GDB once and break at Line 16. You find that the RIP of UnionJack is located at 0xffffdc80.
• Your goal is to place and execute a 32-byte SHELLCODE.

Midterm (Question 3 continues…) Page 6 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 3 continued…)

Q3.1 (1 point) Which of the following memory safety vulnerabilities are present in this code?

A Format string vulnerability

B Signed/unsigned vulnerability

C Heap/stack overflow

D None of the above

Solution:

We can rule out format string vulnerability because there’s no printf in the program.

We can rule out signed/unsigned vulnerability since there are no unsigned types in the code (e.g.
size_t), and the signed types in the code (int i and int max) are never read as unsigned
integers.

This code has a heap overflow and a stack overflow. The fgets on Line 20 writes past the end
of buf on the stack. Also, the memcpy on Line 21 writes past the end of c->tea in the heap.

Q3.2 (1 point) What values go in blanks (1) through (3) in the stack diagram above?

A (1) buf (2) b (3) c->jam

B (1) b (2) target (3) buf

C (1) b (2) b->milk (3) target

Solution: The stack diagram:

0xffffdc80 [4] RIP of UnionJack
0xffffdc7c [4] SFP of UnionJack
0xffffdc78 [4] i
0xffffdc74 [4] c
0xffffdc70 [4] b
0xffffdc6c [4] max
0xffffdc68 [4] target
0xffffdc58 [16] buf

Q3.3 (1 point) What values go in blanks (4) through (6) in the heap diagram above?

A (4) b->milk (5) c->tea (6) c->jam

B (4) b->milk (5) c->jam (6) c->tea

C (4) c->jam (5) c->tea (6) b->milk

Solution: The heap diagram:

0x0804b010 [16] b->milk
0x0804b00c [4] c->jam
0x0804b000 [12] c->tea

Midterm (Question 3 continues…) Page 7 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 3 continued…)

Q3.4 (2 points) Which of these values does the exploit have to overwrite to execute SHELLCODE? Select
all that apply.

A SFP of UnionJack

B target

C RIP of UnionJack

D None of the above

Solution:

Our goal is to overwrite the RIP of UnionJack with the address of shellcode.

However, note that the program does not let us write continuously upwards to RIP.

It may be helpful to write out what parts of memory the attacker controls:
• At Line 20, we can write past the end of buf to overwrite target and two bytes of max.
• At Line 21, all 16 bytes of buf (which we overwrote in the previous line) get copied to c->tea

and c->jam.
• At Line 23, buf gets overwritten again (no writing past the end this time).
• At Line 24, all 16 bytes of buf (which we overwrote in the previous line) get copied to b->milk.
• At Line 28, the value of c on the stack (address of heap, 0x0804b000) gets written to the

address target.

Using our ability to overwrite target, max, and the heap buffers, how can we get the program
to execute shellcode?

First, by process of elimination, notice that the only place where we can fit a 32-byte shellcode is
the heap. So Lines 20, 21, 23, 24 will be used to write the shellcode into buf (16 bytes at a time),
such that the shellcode then gets copied into c->tea, c->jam, and b->milk.

This leaves us with target and max for overwriting the RIP with the address of shellcode.

Since we wrote the shellcode to the heap, the address of shellcode is 0x0804b000 (the address
of the heap).

On Line 28, the value 0x0804b000 gets written to the address stored in target, which we
control. So if we overwrite target to be the address of the RIP, then Line 28 will write
0x0804b000 (aka address of the shellcode) to the RIP!

In summary:
• We need to overwrite target (to change where the memcpy on Line 28 writes to).
• This causes memcpy on Line 28 to write to the RIP of UnionJack.
• We never overwrite the SFP of UnionJack.

One final challenge: Since i=0 and max=1, the while loop only runs once right now, and Lines
23-24 won’t execute. We can fix this by overwriting max to be 2, so that the loop runs twice,
executing Lines 20-21 the first time, and Lines 23-24 the second time.

In the next two subparts, provide inputs that would cause the program to execute SHELLCODE. You may
use slicing to construct payloads, e.g. SHELLCODE[0:8] represents the first 8 bytes of SHELLCODE.

Midterm (Question 3 continues…) Page 8 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 3 continued…)

Q3.5 (6 points) Input to fgets at Line 20:

SHELLCODE[0:16] + '\x80\xdc\xff\xff' + '\x02'

Solution:

If you haven’t already, read the solutions to the previous parts to understand what this exploit
needs to do.

What does the program do with the input on Line 20?
• The first 16 bytes are written to buf, which then gets copied (on Line 21) to c->tea and
c->jam.

• The next 4 bytes overwrite target.
• The next byte overwrites the LSB of max.
• The last byte is a null byte, automatically added by fgets.

Therefore, the bytes we should input are:
• SHELLCODE[0:16]: We want the shellcode stored on the heap. c->tea is at the bottom of the

heap, so we should write the first 16 bytes of shellcode here.
• '\x80\xdc\xff\xff': We overwrite target with the address of the RIP of UnionJack. This

way, Line 28 will copy 0x0804b000 (address of heap, aka address of shellcode) to the RIP
of UnionJack.

• '\x02': This changes the value of max from 1 to 2. Note that the null byte appended by fgets
doesn’t affect our exploit, since the next byte of max (where the null byte gets written) is
already 0x00.

Q3.6 (3 points) Input to fread at Line 23:

SHELLCODE[16:32]

Solution:

Line 23 writes 16 bytes to buf, and then those bytes get copied to b->milk.

In order to finish writing the shellcode onto the stack, we should input SHELLCODE[16:32] (the
second half of shellcode). Then, Line 24 will copy this second half of shellcode to b->milk.

Midterm (Question 3 continues…) Page 9 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 3 continued…)

Solution: Side note: Read this if you’re confused about Line 28: memcpy(target, &c, 4).

memcpy takes in two addresses, telling us where to read from, and where to write to.

We should read data stored at the address &c. If we go to this address (dereference), we will find c,
which is the 4-byte value 0x0804b000 on the stack. This value corresponds to the address of the heap,
and this is the value we will be writing.

We should write to the address target. We overwrite target to be 0xffffdc80, so if we go to this
address, we will find the RIP of UnionJack. This is the place we will be writing to.

(Note: The memcpy is not overwriting the value in the target variable. Instead, it is reading the address
in target, going to that address, and writing to that location.)

Q3.7 (2 points) Which memory safety defenses would cause the correct exploit (without modifications)
to fail? Consider each choice independently.

A ASLR B Stack canaries C None of the above

Solution:

ASLR breaks the exploit, because the RIP of UnionJack is now at a different address every time,
and our exploit hard-codes the address 0xffffdc80.

Stack canaries do not break this exploit, because we never write contiguously to higher addresses
to overwrite the canary. Instead, the memcpy on Line 28 directly writes 4 bytes to the RIP of
UnionJack, without changing any canary that would get added below the RIP of UnionJack.

Q3.8 (1 point) Would the correct exploit (without modifications) fail if non-executable pages are enabled?

A No, because the exploit redirects control flow to an executable heap region.

B No, because the exploit overwrites the return address without executing any injected code.

C Yes, because the injected shellcode is stored in a non-executable memory region.

D Yes, because the return address cannot be modified if non-executable pages are enabled.

Solution:

(C) is correct because we wrote shellcode to the heap. However, with non-executable pages, the
shellcode on the heap is not allowed to be executed as code.

(D) is false because the stack is marked as writable (and non-executable). Therefore, it is possible
to overwrite the return address on the stack, even with non-executable pages enabled.

Midterm (Question 3 continues…) Page 10 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 3 continued…)

Q3.9 (2 points) Would the correct exploit (without modifications) fail if Line 23 is replaced with
fgets(buf, 16, stdin)?

A No, because fgets does not append null bytes, and therefore writes shellcode correctly.

B No, because both fread and fgets write exactly 16 bytes into buf.

C Yes, because fgets adds a null terminator, so only 15 bytes of user input will be read.

D Yes, because fgets reads from a different file stream than fread.

Solution:

(C) is correct because Line 23 is responsible for writing 16 bytes of the shellcode into memory.
However, fgets would only allow us to write 15 bytes into memory, and the 16th byte written
would be a null byte instead.

(D) is false because fgets and fread both read from stdin (i.e. input provided by the user in
their terminal).

Midterm (Question 3 continues…) Page 11 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 3 continued…)

Q3.10 (4 points) Select the modifications that would prevent the attacker from executing SHELLCODE.
Consider each choice independently.

A Changing Line 20 from fgets(buf, 22, stdin); to fgets(buf, 17, stdin);

B Changing Line 28 from memcpy(target, &c, 4); to memcpy(target, c->tea, 4);

C
Changing Line 12 to crumpets *c = malloc(sizeof(biscuit));
and Line 13 to biscuit *b = malloc(sizeof(crumpets));

D Moving Line 14 (int max = 0x00000001;) to be the first line of the function.

E None of the above

Solution:

(A) is true. Line 20 is used to overwrite target and max, and this modification would prevent
the attacker from overwriting target and max (which is necessary for our exploit to work).

(B) is true. c->tea is the first 4 bytes of shellcode, so memcpy would try to read the first 4 bytes of
shellcode as an address, and read from that address. This will likely crash the program, because
shellcode is not a valid memory address.

Note that you could try to modify the exploit so that the address of shellcode (aka address of
heap, 0x0804b000) is written on the heap, but this won’t work either. The heap only has 32
bytes, and it won’t fit both a 32-byte shellcode and another address.

(C) is false. sizeof(biscuit) and sizeof(crumpets) both evaluate to 16, so this program
still ends up creating two 16-byte buffers on the heap, where shellcode can be written.

(D) is true. In the new stack diagram, max would be further up the stack, and Line 20 would not
be able to write to max. (Instead, Line 20 would be able to overwrite target and some of b, the
next variable up on the stack.)

Midterm Page 12 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

Q4 Memory Safety: Are you being fr ❓ (17 points)

Stack at Line 2

RIP of vulnerable

(1)

(2)

i

(3)

cpy

(4)

(5)

(6)

msg

Consider the following vulnerable C code:

1 void foo(void) {
2 char msg[8];
3 fgets(msg, 8, stdin);
4 printf(msg);
5 fread(msg, 20, 1, stdin);
6 }
7
8 void vulnerable() {
9 int i;

10 char buf[20];
11 char cpy[20];
12 fread(buf, 20, 1, stdin);
13 for(i = 19; i >= 0; i--) {
14 cpy[i] = buf[19-i];
15 }
16 foo();
17 }

Assumptions:
• Stack canaries and non-executable pages are enabled, and

all other memory safety defenses are disabled.
• You run GDB once and find that the library function system is located at the address 0xdeadbeef.
• The RIP of foo is located at 0xffffdc90. The RIP of vulnerable is located at 0xffffdcc8.
• Your goal is to execute system with the 8-character string "rm -rf /" as the argument.

Q4.1 (1 point) What values go in blanks (1) through (3) in the stack diagram above?

A (1) canary (2) RIP of foo (3) SFP of vulnerable

B (1) canary (2) SFP of vulnerable (3) buf

C (1) SFP of vulnerable (2) canary (3) buf

D (1) SFP of vulnerable (2) cpy (3) canary

Q4.2 (1 point) What values go in blanks (4) through (6) in the stack diagram above?

A (4) canary (5) RIP of foo (6) SFP of foo

B (4) canary (5) SFP of foo (6) RIP of foo

C (4) RIP of foo (5) SFP of foo (6) canary

D (4) RIP of foo (5) &msg (6) SFP of foo

Midterm (Question 4 continues…) Page 13 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 4 continued…)

Solution: The stack diagram:

0xffffdcc8 [4] RIP of vulnerable
0xffffdcc4 [4] SFP of vulnerable
0xffffdcc0 [4] canary
0xffffdcbc [4] i
0xffffdca8 [20] buf
0xffffdc94 [4] cpy
0xffffdc90 [4] RIP of foo
0xffffdc8c [4] SFP of foo
0xffffdc88 [4] canary
0xffffdc80 [8] msg

Q4.3 (2 points) What type of vulnerability is present in this code? Select all that apply.

A Format string vulnerability

B ret2ret

C Signed/unsigned

D Off-by-one

E Buffer overflow

F None of the above

Solution:

Our goal is to execute system("rm -rf /") by overwriting the RIP of foo. To our disposal we have:

In vulnerable():
• fread(buf, 20, 1, stdin); allows us to fully control 20 bytes of input, which then get copied

to cpy in reverse order, one byte at a time. buf will essentially be ‘mirrored’ into cpy
• This fread will be used to push the arguments for system onto our stack
• After the loop, foo() is called

In foo():
• fgets(msg, 8, stdin) allows us to write format string specifiers and other arguments into msg

that will then be consumed by the pringt. This will allow us to leak the value of the canary
• fgets(msg, 20, stdin) once we leaked the value of the canary, we can use this fgets to compete

our canonical buffer overflow

Q4.4 (3 points) Which of these inputs to fgets on Line 3 will always leak the value of the stack canary
in the foo stack frame? Select all that apply.

Note: You are able to convert any numerical representation of the canary into a usable form.
Note: Stack canaries are four random bytes (no null byte).

A '%x' * 3

B '%n' * 3

C '\x88\xdc\xff\xff' + '%s'

D 2 * '%c' + '%p'

E '\xc0\xdc\xff\xff' + '%s'

F None of the above

Midterm (Question 4 continues…) Page 14 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 4 continued…)

Solution: We are given two methods of leaking the canary here:

First, we use two format specifiers to eat two arguments to printf and a third to print out the stack
canary. Note that the spacing works out because the format string starts eating arguments 8 bytes
above the RIP of printf, which is at the beginning of msg. Of the available options, %x prints out the
specified word as hex, %n writes the number of characters printed to the specified address, and %p
prints out the specified word as a pointer (also in hex). Since %x and %p print out the specified word in
hex, they correctly leak the stack canary.

Second, we write in an address in the stack below a stack canary, and use the %s format specifier to
start printing the values in the stack. If the last byte of our chosen address is 0x88, we start printing
directly at the stack canary below SFP of foo, which leaks the canary. If the last byte is 0xc0, we start
printing at the RIP of foo, which means we’re in the main stack frame and won’t print the canary from
the foo stack frame (even if the canary may be leaked from main).

In the next two subparts, provide inputs that would cause the program to execute system("rm -rf /").
You may use CANARY to refer to the correct value of the stack canary, as leaked by printf.

Midterm (Question 4 continues…) Page 15 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 4 continued…)

Q4.5 (5 points) Input to fread at Line 12:

'A'* 3 + '\x00' + ' \ fr- mr ' +

' \xff\xff\xdc\x9c ' + 'A'* 4

Solution: This exploit is very similar to the example ret2libc attack in Lecture 5. The caveat here
is that we have to reverse our input into buf because buf will be copied in reverse order into
cpy by the for loop.

Recall that in x86 calling convention, the callee function (system) expects its RIP and arguments
to already have been pushed onto the stack. However, when foo calls ret, it will pop RIP of
foo off the stack, leaving the ESP to point directly above foo, where it’s first argument would
be. This mismatch means that we need to pad 4 bytes before writing our first argument, since
system will expect the esp to be pointing at RIP of system.

foo’s POV system’s POV
0xffffdc9c [20] buf 0xffffdc9c [4] arg1
0xffffdc94 [4] cpy 0xffffdc94 [4] RIP of system→
0xffffdc90 [4] RIP of foo 0xffffdc90 [4] RIP of foo (out of frame)

Also recall that strings in C are passed using a pointer to the first character in a character array.
As such, in order to run system with the string argument rm -rf \, we need to first pad 4
bytes (in order to fake an RIP), then provide a pointer to a known address, and finally write our
character array at that known address. Crucially, we have to remember to end this with a null
byte, since strings are null-terminated in C. In this case, the only address we are able to write to
is 4 bytes above where we are.

Finally, since we are copying the values in reverse order from buf, we have to flip the entire
input. Also, it is important that we pad with exactly 3 more bytes of garbage, since the last byte
of buf will become the first byte of cpy, and we want all values to line up correctly, so we need
our attack to be at the very top of buffer.

Q4.6 (5 points) Input to fread at Line 5:

'A' * 8 + OUTPUT + 'A' * 4 + '\xef\xbe\xad\xde'

Solution: Now that we have successfully pushed our arguments into the stack, we just have to
finish our canonical buffer overflow, remembering to correctly replace the value of the canary.
Hence, we pad 8 bytes of garbage for msg, followed by the canary, 4 bytes of garbage for the SFP,
and then finally we overwrite the RIP of foo with the address of system (in little endian)

Midterm Page 16 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

https://docs.google.com/presentation/d/1ZONpx6qlqR2GyIF2nL3zjuDiOVknApgFOVwMHagmskI/edit?slide=id.g1377f732614_0_1122#slide=id.g1377f732614_0_1122

Q5 Cryptography: AES-161 🤖 (18 points)

EvanBot creates a new block cipher mode of operation, called AES-161. The encryption formulas are:

𝐶1 = 𝐸𝐾(𝑃1 ⊕ 𝐼𝑉1 ⊕ 𝐼𝑉2)
𝐶𝑛 = 𝐸𝐾(𝑃𝑛 ⊕ 𝐶𝑛−1 ⊕ … ⊕ 𝐶1⏟⏟⏟⏟⏟⏟⏟

previous ciphertext blocks

⊕ 𝐼𝑉1 ⊕ 𝐼𝑉2)

In this entire question, assume that all IVs are independently randomly generated.

Q5.1 (2 points) Select the decryption formula for AES-161.

A 𝑃1 = 𝐷𝐾(𝐶1) ⊕ 𝐼𝑉1 ⊕ 𝐼𝑉2 𝑃𝑛 = 𝐷𝐾(𝐶𝑛) ⊕ 𝐶𝑛−1 ⊕ … ⊕ 𝐶1 ⊕ 𝐼𝑉1 ⊕ 𝐼𝑉2

B 𝑃1 = 𝐷𝐾(𝐶1) ⊕ 𝐼𝑉1 ⊕ 𝐼𝑉2 𝑃𝑛 = 𝐷𝐾(𝐶𝑛) ⊕ 𝐶𝑛−1 ⊕ … ⊕ 𝐶1

C 𝑃1 = 𝐷𝐾(𝐶1) ⊕ 𝐼𝑉1 ⊕ 𝐼𝑉2 𝑃𝑛 = 𝐷𝐾(𝐶𝑛−1) ⊕ … ⊕ 𝐷𝐾(𝐶1) ⊕ 𝐼𝑉1 ⊕ 𝐼𝑉2

D 𝑃1 = 𝐷𝐾(𝐶1) ⊕ 𝐼𝑉1 ⊕ 𝐼𝑉2 𝑃𝑛 = 𝐷𝐾(𝐶𝑛) ⊕ 𝐶𝑛−1 ⊕ … ⊕ 𝐶2 ⊕ 𝐼𝑉1 ⊕ 𝐼𝑉2

E None of the above

Solution: To find 𝑃𝑛, we start with the formula for 𝐶𝑛 and apply reverse operations to isolate 𝑃𝑛.
We first apply the decryption function on both sides, then XOR both sides by the previous ciphertext
blocks and both 𝐼𝑉s.

Q5.2 (2 points) Is this scheme confidential under IND-CPA?

A Yes B No

If “No,” provide two plaintexts (𝑀 and 𝑀 ′), each two blocks long, that could be used by the
adversary to win the IND-CPA game. You may write one integer per box, and they will be converted
to the associated bitstrings.

If “Yes,” leave the boxes blank.

𝑀 = (,)

𝑀 ′ = (,)

Solution: The IVs used for each block encryption provide randomness to each individual ciphertext,
and the use of all previous blocks in the encryption of the current block ensures that no two blocks
will be encrypted in exactly the same way, so this scheme is IND-CPA secure.

Q5.3 (2 points) Alice sends a 4-block message (𝑃1, 𝑃2, 𝑃3, 𝑃4) to Bob. Mallory tampers with the message
by flipping one bit in 𝐶3.

When Bob decrypts the tampered ciphertext, he gets (𝑃 ′
1 , 𝑃 ′

2 , 𝑃 ′
3 , 𝑃 ′

4). Which blocks match the
original plaintext that Alice sent? Select all that apply.

A 𝑃 ′
1 B 𝑃 ′

2 C 𝑃 ′
3 D 𝑃 ′

4

Midterm (Question 5 continues…) Page 17 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 5 continued…)

Solution: When decrypting ciphertext, according to our decryption function, changes in the ciphertext
of the current and previous blocks affect the decryption of the current block. Since one bit is flipped
in 𝐶3, 𝐶3 and all subsequent blocks will no longer decrypt to their corresponding original plaintext.

Q5.4 (1 point) Under this scheme, are encryption and decryption parallelizable?

A Both are parallelizable.

B Only encryption is parallelizable.

C Only decryption is parallelizable.

D Neither are parallelizable.

Solution: Encryption is not parallelizable because the encryption of the current block requires the
ciphertext of all previous blocks to have been calculated. Decryption is parallizable because even
though decryption also requires the ciphertext of all previous blocks, the ciphertext blocks are already
known.

Midterm (Question 5 continues…) Page 18 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 5 continued…)

After looking at AES-161, EvanBot thinks that they have come up with a better idea. For the following
three subparts, answer the same questions for this modified scheme:

𝐶1 = 𝐸𝐾(𝑃1 ⊕ 𝐼𝑉1 ⊕ 𝐼𝑉2)
𝐶𝑛 = 𝐸𝐾(𝑃𝑛 ⊕ 𝐶𝑛−1 ⊕ … ⊕ 𝐶1⏟⏟⏟⏟⏟⏟⏟

previous ciphertext blocks

⊕ 𝑃𝑛−1 ⊕ … ⊕ 𝑃1⏟⏟⏟⏟⏟⏟⏟
previous plaintext blocks

⊕ 𝐼𝑉1 ⊕ 𝐼𝑉2)

Q5.5 (2 points) Is this scheme confidential under IND-CPA?

A Yes B No

If “No,” provide two plaintexts (𝑀 and 𝑀 ′), each two blocks long, that could be used by the
adversary to win the IND-CPA game. You may write one integer per box, and they will be converted
to the associated bitstrings.

If “Yes,” leave the boxes blank.

𝑀 = (,)

𝑀 ′ = (,)

Solution:

The intuitive argument for this scheme is similar to the argument for AES-CBC security.

Similar to AES-CBC, the first ciphertext is the plaintext XORed with a random value, except this
random value is two IVs XORed together rather than a single IV.

Similarly, following ciphertexts are the corresponding plaintexts, XORed with a previous ciphertext,
except this modified scheme also includes all the previous ciphertext, all the previous plaintexts, and
the two IVs.

Note that this is not a formal proof of security, and that a formal proof was not necessary on the exam.

Q5.6 (2 points) Alice sends a 4-block message (𝑃1, 𝑃2, 𝑃3, 𝑃4) to Bob. Mallory tampers with the message
by flipping one bit in 𝐶3.

When Bob decrypts the tampered ciphertext, he gets (𝑃 ′
1 , 𝑃 ′

2 , 𝑃 ′
3 , 𝑃 ′

4). Which blocks match the
original plaintext that Alice sent? Select all that apply.

A 𝑃 ′
1 B 𝑃 ′

2 C 𝑃 ′
3 D 𝑃 ′

4

Solution: Each ciphertext in the modified scheme is used to devise the ciphertext of the next block.
However, previous blocks do not use later blocks when devising their ciphertext. As such, modifications
to a block of ciphertext affect the corresponding block of plaintext obtained from decrypting that
ciphertext as well as any later blocks of decrypted plaintext, but not any previous blocks of plaintext.

Midterm (Question 5 continues…) Page 19 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 5 continued…)

Q5.7 (1 point) Are encryption and decryption under this scheme parallelizable?

A Both are parallelizable.

B Only encryption is parallelizable.

C Only decryption is parallelizable.

D Neither are parallelizable.

Solution:

Encryption cannot be parallelized. To see why, look at the encryption equation:

𝐶𝑛 = 𝐸𝐾(𝑃𝑛 ⊕ 𝐶𝑛−1 ⊕ … ⊕ 𝐶1⏟⏟⏟⏟⏟⏟⏟
previous ciphertext blocks

⊕ 𝑃𝑛−1 ⊕ … ⊕ 𝑃1⏟⏟⏟⏟⏟⏟⏟
previous plaintext blocks

⊕ 𝐼𝑉1 ⊕ 𝐼𝑉2)

To compute ciphertext block 𝐶𝑛, you need the previous ciphertext block 𝐶𝑛−1 to be computed first.

Decryption cannot be parallelized. To see why, write out the decryption equation:

𝑃𝑛 = 𝐷𝐾(𝐶𝑛) ⊕ 𝐶𝑛−1 ⊕ … ⊕ 𝐶1⏟⏟⏟⏟⏟⏟⏟
previous ciphertext blocks

⊕ 𝑃𝑛−1 ⊕ … ⊕ 𝑃1⏟⏟⏟⏟⏟⏟⏟
previous plaintext blocks

⊕ 𝐼𝑉1 ⊕ 𝐼𝑉2

To compute plaintext block 𝑃𝑛, you need the previous plaintext block 𝑃𝑛−1 to be computed first.

Midterm (Question 5 continues…) Page 20 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 5 continued…)

EvanBot wants to give scheming one last shot, so they make one last change. For the following three
subparts, answer the same questions for this modified scheme:

𝐶1 = 𝐸𝐾(𝑃1 ⊕ 𝐼𝑉1 ⊕ 𝐼𝑉2)
𝐶𝑛 = 𝐸𝐾(𝑃𝑛 ⊕ 𝑃𝑛−1 ⊕ … ⊕ 𝑃1⏟⏟⏟⏟⏟⏟⏟

previous plaintext blocks

⊕ 𝐼𝑉1 ⊕ 𝐼𝑉2)

Q5.8 (2 points) Is this scheme confidential under IND-CPA?

A Yes B No

If “No,” provide two plaintexts (𝑀 and 𝑀 ′), each two blocks long, that could be used by the
adversary to win the IND-CPA game. You may write one integer per box, and they will be converted
to the associated bitstrings.

If “Yes,” leave the boxes blank.

𝑀 = (0 , 0)

𝑀 ′ = (1 , 1)

Solution: To get credit, one message had to be of the form (Anything, 0), and the other had to be
of the form (Anything, Anything nonzero). If the first one is encrypted, the resulting ciphertext
will contain two identical blocks. If not, the blocks will differ. An adversary can use this to
determine which plaintext message was encrypted in the IND-CPA game.

Q5.9 (2 points) Alice sends a 4-block message (𝑃1, 𝑃2, 𝑃3, 𝑃4) to Bob. Mallory tampers with the message
by flipping one bit in 𝐶3.

When Bob decrypts the tampered ciphertext, he gets (𝑃 ′
1 , 𝑃 ′

2 , 𝑃 ′
3 , 𝑃 ′

4). Which blocks match the
original plaintext that Alice sent? Select all that apply.

A 𝑃 ′
1 B 𝑃 ′

2 C 𝑃 ′
3 D 𝑃 ′

4

Solution: The scheme to decrypt each block of ciphertext would the decryption function called
on the block of ciphertext following by XORing the result with each previously obtained block of
plaintext and the two IVs. If a previous block of plaintext or the current ciphertext is wrong, then
the resulting current plaintext block would also be wrong. Since the ciphertext remains the same
for 𝑃 ′

1 and 𝑃 ′
2 , the corresponding plaintext remains the same. However, the ciphertext has been

modified for the third block, resulting in a wrong 𝑃 ′
3 and as a following consequence a wrong

𝑃 ′
4 .

Midterm (Question 5 continues…) Page 21 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 5 continued…)

Q5.10 (1 point) Are encryption and decryption under this scheme parallelizable?

A Both are parallelizable.

B Only encryption is parallelizable.

C Only decryption is parallelizable.

D Neither are parallelizable.

Solution:

Encryption can be parallelized. Looking at the encryption equation, each block of ciphertext only
depends on the previous blocks of plaintext and the two IVs. The plaintext and IVs are all known
at the start of the encryption process, and do not need to be computed.

Decryption cannot be parallelized. To see why, write out the decryption equation:

𝑃𝑛 = 𝐷𝐾(𝐶𝑛) ⊕ 𝑃𝑛−1 ⊕ … ⊕ 𝑃1⏟⏟⏟⏟⏟⏟⏟
previous plaintext blocks

⊕ 𝐼𝑉1 ⊕ 𝐼𝑉2

To compute plaintext block 𝑛, you need the previous plaintext block 𝑛 − 1 to be computed first.

Q5.11 (1 point) If EvanBot decides to remove one of the IVs, does the confidentiality of this last scheme
under IND-CPA change?

A Yes B No

Solution: Not IND-CPA secure anyway.

Midterm Page 22 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

Q6 Cryptography: Talk To Me Nicely 🗣 (18 points)

Alice and Bob are considering some cryptographic schemes. Determine whether each scheme provides
confidentiality and integrity.

Notation:
• 𝑀 = 𝑀1 ‖ 𝑀2 ‖ … ‖ 𝑀𝑛 is the message.
• 𝐶 is the resulting output sent over the channel.
• 𝐾1and 𝐾2 are secret keys known only to Alice and Bob.
• Every call to 𝖢𝖡𝖢 uses independently randomly-generated IVs.

Note: For all schemes, each 𝐶𝑖 is computed with a separate call to 𝖢𝖡𝖢, with a separate IV.

For the next two subparts, consider the following scheme:

𝐶𝑖 = 𝖢𝖡𝖢(𝐾1, 𝑀𝑖) 𝑡𝑖 = 𝖧(𝐶𝑖) 𝐶 = (𝐶1 ‖ 𝑡1) ‖ (𝐶2 ‖ 𝑡2) ‖ … ‖ (𝐶𝑛 ‖ 𝑡𝑛)

Q6.1 (1 point) Does this scheme provide confidentiality?

A Yes B No

Solution: This scheme is provides confidentiality. Appending the hash of the ciphertext does
not leak information about the underlying plaintext. AES-CBC remains IND-CPA secure as long
as the ciphertext and IV are chosen properly, and the hash of the ciphertext adds no new leakage.

Q6.2 (4 points) Does this scheme provide integrity?

A Yes B No

Explain your reasoning for Q6.2:

Solution: This scheme does not provide integrity. Since the hash is not keyed, an attacker can
forge a valid-looking (𝐶𝑖, hash) pair.

For the next two subparts, consider the following scheme:

𝐶𝑖 = 𝖢𝖡𝖢(𝐾1, 𝑀𝑖) 𝑡𝑖 = 𝖧𝖬𝖠𝖢(𝐾2, 𝐶𝑖) 𝐶 = (𝐶1 ‖ 𝑡1) ‖ (𝐶2 ‖ 𝑡2) ‖ … ‖ (𝐶𝑛 ‖ 𝑡𝑛)

Q6.3 (1 point) Does this scheme provide confidentiality?

A Yes B No

Solution: This is IND-CPA secure. You encrypt each message block with CBC mode, which is
IND-CPA secure, and then you compute the HMAC tag of each ciphertext block and concatenate
the Ciphertext block with the integrity tag for the block. This is essentially encrypt-then-MAC

Midterm (Question 6 continues…) Page 23 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 6 continued…)

Q6.4 (4 points) Does this scheme provide integrity?

A Yes B No

Explain your reasoning for Q6.4:

Solution: This scheme does not provide integrity: Even though a keyed MAC is used, it is only
applied independently to each ciphertext block. This allows an attacker to rearrange, remove,
or replay blocks from previously seen messages, since each block is authenticated in isolation.
The receiver will accept any valid (𝐶𝑖, 𝑡𝑖) pair, even if the overall message structure has been
tampered with.

For the next two subparts, consider the following scheme where 𝐶0 = IV:

𝐶𝑖 = 𝖢𝖡𝖢(𝐾1, 𝑀𝑖) 𝑡𝑖 = 𝐻(𝐶𝑖 ⊕ 𝐶𝑖−1) 𝐶 = (𝐶1 ‖ 𝑡1) ‖ (𝐶2 ‖ 𝑡2) ‖ … ‖ (𝐶𝑛 ‖ 𝑡𝑛)

Q6.5 (1 point) Does this scheme provide confidentiality?

A Yes B No

Solution: This scheme is IND-CPA secure. This construction only hashes values derived from
the ciphertext, not the plaintext. Since CBC encryption already hides the plaintext well, and the
hash depends on pseudorandom ciphertext values, the scheme does not leak information and
preserves IND-CPA confidentiality.

Q6.6 (4 points) Does this scheme provide integrity?

A Yes B No

Explain your reasoning for Q6.6:

Solution: This scheme does not provide integrity: Although the hash links adjacent blocks, the
hash is unkeyed and public. This allows an attacker to modify the ciphertext and recompute
the hash without needing any secret information. Additionally, because each block is tagged
independently, an attacker can remove or rearrange blocks without breaking the tag checks —
meaning tampering can go undetected.

These last two subparts are independent from earlier subparts.

Q6.7 (2 points) EvanBot uses a hash function with a 256-bit output. Approximately how many random
inputs would EvanBot need to hash before expecting to find a collision?

A 232

B 2128

C 2192

D 2256

E 2512

F None of the above

Midterm (Question 6 continues…) Page 24 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 6 continued…)

Solution: To estimate collisions, we use the birthday bound: for an n-bit hash output, collisions are
expected after about 2{𝑛

2 } inputs.

Since EvanBot’s hash is 256 bits, the expected number of inputs before a collision is 2{128}.

We talked about this idea in Lecture 9

Q6.8 (1 point) Select all properties of a cryptographic hash function.

A Deterministic

B Invertible

C One-wayness

D Collision resistance

E Resistance to length-extension attacks

F None of the above

Solution: These are the characteristics of a hash function as defined in Lecture 9

Midterm Page 25 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

https://docs.google.com/presentation/d/1lsIBZoe_YZf6UctTpUOmJBgEFUtWvYWoTURXbDT2Y8A/edit?slide=id.g22ec2895274_0_0#slide=id.g22ec2895274_0_0
https://docs.google.com/presentation/d/1lsIBZoe_YZf6UctTpUOmJBgEFUtWvYWoTURXbDT2Y8A/edit?slide=id.g114be457fea_0_482#slide=id.g114be457fea_0_482

Q7 Cryptography: El-Ephant in the Room 🐘 (10 points)

Alice and Bob design a protocol for communicating.

Before the start of the protocol:
• Alice and Bob agree on a large prime 𝑝, generator 𝑔, and password pwd.
• Bob has a private key 𝑏 and a known public key 𝐵 ≡ 𝑔𝑏 mod 𝑝.

Each time they wish to communicate, they do these steps:

1. Alice and Bob derive the password key by each computing 𝐾pwd = 𝖧(pwd).

2. Alice randomly generates a session key 𝐾sess.

3. Alice picks a random exponent 𝑢 and uses El Gamal to encrypt 𝐾sess with Bob’s public key 𝐵:

𝑈 ≡ 𝑔𝑢 mod 𝑝
𝑉 ≡ 𝐾sess · 𝐵𝑢 mod 𝑝

Alice then computes 𝐶 = 𝖤𝗇𝖼(𝐾pwd, (𝑈 ‖ 𝑉)), and Alice sends 𝐶 to Bob.

4. Bob recovers the session key by first using 𝐾pwd to decrypt 𝐶 to get (𝑈 ‖ 𝑉).

Then, he uses his private key 𝑏 to compute 𝐾sess =
Q7.1

.

Q7.1 (2 points) Which equation describes how Bob computes the session key in Step 4?

A 𝑉 ⋅ (𝑈𝑏)−1 mod 𝑝

B 𝑈𝑏 ⋅ 𝑉 −1 mod 𝑝

C (𝑉 ⋅ 𝑈−1)𝑏 mod 𝑝

D 𝑉 𝑏 ⋅ 𝑈 mod 𝑝

Solution:

(𝑈 ‖ 𝑉) is 𝐾sess, encrypted with El Gamal using Bob’s public key 𝐵.

So, to decrypt and recover 𝐾sess, we just need to use El Gamal decryption on ciphertext (𝑈 ‖ 𝑉)
with Bob’s private key 𝑏.

More detailed solution:

To obtain 𝐾sess, Bob needs to remove 𝐵𝑢 mod 𝑝 from 𝑉 . This is equivalent to 𝑔𝑏𝑢 mod 𝑝, which
can be obtained by taking 𝑈 = 𝑔𝑢 mod 𝑝 to the power of 𝑏. To remove this from V, the inverse
is needed, which is (𝑈𝑏)−1 mod 𝑝.

Eve is an attacker who records 𝐶 = 𝖤𝗇𝖼(𝐾pwd, (𝑈 ‖ 𝑉)).

Midterm (Question 7 continues…) Page 26 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 7 continued…)

Q7.2 (2 points) .What is the minimum set of values Eve needs to derive 𝐾sess?

A Both 𝑏 and pwd.

B 𝑏 (but not pwd).

C pwd (but not 𝑏).

D Neither 𝑏 nor pwd.

Solution:

To obtain 𝐾sess, Eve would first need to get past the keyed encryption, which requires knowing
𝐾pwd. 𝐾pwd can be obtained using pwd and the public hash function 𝖧.

After this, Eve would need 𝑔𝑏𝑢 mod 𝑝 to isolate 𝐾sess. Eve has 𝑈 ≡ 𝑔𝑢 mod 𝑝, so she needs 𝑏 to
find the necessary value to derive 𝐾sess.

Q7.3 (2 points) For this subpart only, suppose Eve knows pwd and 𝑏. Can Eve now derive 𝑢?

In 10 words or fewer, explain your reasoning. (The staff answer is 3 words.)

A Yes B No

Discrete Log Problem

Solution:

Eve can use pwd to derive 𝐾pwd = 𝖧(pwd).

Then, Eve can use 𝐾pwd to decrypt 𝐶 = 𝖤𝗇𝖼(𝐾pwd, (𝑈 ‖ 𝑉)), which gives Eve (𝑈 ‖ 𝑉).

Eve now knows:

𝑈 ≡ 𝑔𝑢 mod 𝑝
𝑉 ≡ 𝐾sess · 𝐵𝑢 mod 𝑝

However, Eve still cannot derive 𝑢. The discrete log problem says that given 𝑔𝑢 mod 𝑝, it is
computationally infeasible to compute 𝑢.

There is also no way to derive 𝑢 from 𝑉 . Eve could use 𝑏 to perform ElGamal decryption
and obtain 𝐾sess, using the equation from Q7.1. Then, Eve could compute 𝑉 ⋅ 𝐾−1

sess to obtain
𝐵𝑢 mod 𝑝. However, the discrete log problem still makes it infeasible to compute 𝑢.

Grading: We gave points if and only if you mentioned “discrete log problem” (or wrote a
description, e.g. “hard to get 𝑢 from 𝑔𝑢 mod 𝑝”), and you did not include any additional incorrect
information in your answer.

Midterm (Question 7 continues…) Page 27 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 7 continued…)

Q7.4 (2 points) Step 3 uses 𝐾pwd to encrypt (𝑈 ‖ 𝑉). Select all encryption schemes for Step 3 that would
(with high probability) prevent Alice and Bob from computing the same value of 𝐶 twice.

A AES-ECB

B AES-CBC with random IVs

C AES-CBC with IVs always set to 0

D AES-CTR with random nonces

E AES-CTR with nonces always set to 0

F None of the above

Solution: Note that 𝑈 ‖ 𝑉 is derived from the randomly-generated value 𝑢, so the input to the
encryption is random (and highly unlikely to be identical).

Since the input to the encryption is always different, the output should also be always different,
even if we use a deterministic encryption scheme like AES-ECB or AES-CBC with IVs always set
to 0.

Q7.5 (2 points) For this subpart only, we modify the protocol so that 𝑈 ‖ 𝑉 is no longer encrypted, but
an HMAC is applied instead:

In Step 3, Alice now computes 𝐶 = 𝑈 ‖ 𝑉 ‖ 𝖧𝖬𝖠𝖢(𝐾pwd, (𝑈 ‖ 𝑉)).

Suppose Eve knows 𝑏. Can Eve derive 𝐾sess?

A Yes, but only if Eve knows pwd.

B Yes, even if Eve does not know pwd.

C No, even if Eve knows pwd.

Solution: Since we no longer encrypt 𝑈 and 𝑉 with 𝐾pwd, 𝐾sess is only encrypted with El Gamal,
based on the private key 𝑏. Eve knows this private key, so she can decrypt the message whether
or not she knows the password. The HMAC does not provide confidentiality, so it does not impact
the output of this question.

Midterm (Question 7 continues…) Page 28 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 7 continued…)

Post-Exam Activity: Bot Gets Dinner
EvanBot is going out to get dinner after their CS 161 exam! Where does Bot want to eat?

\x49\x48\x4f\x50
(hint: use a hex decoder)

Comment Box
Congratulations for making it to the end of the exam! Feel free to leave any final thoughts, comments,
feedback, or doodles here:

Midterm Page 29 of 29 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

	Honor Code
	Potpourri
	Memory Safety: Heap Calm and Carry On 🇬🇧
	Memory Safety: Are you being fr ❓
	Cryptography: AES-161 🤖
	Cryptography: Talk To Me Nicely 🗣️
	Cryptography: El-Ephant in the Room 🐘
	Post-Exam Activity: Bot Gets Dinner
	Comment Box

